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PART	I

Sixth	Century	B.C.





CHAPTER	0

“At	the	hinge	of
legend	and	history”

ON	THE	AEGEAN	ISLAND	OF	Samos,	on	the	narrow	arm	of	the	harbor	that	juts
farthest	out	to	sea,	there	is	a	stark,	skeletal	structure.	Immense	shards	of	iron
look	as	though	they	have	fallen	from	the	sky	in	the	shape	of	a	huge	right
triangle.	One	end	of	the	diagonal	has	buried	itself	in	the	ground.	Instead	of	a
vertical	line	rising	from	the	right	angle,	there	is	the	statue	of	a	man—lean,
elongated,	taller	than	life.	He	is	reaching	up	with	his	right	arm	as	though	to
conjure	down	the	broken	piece	of	iron	that,	if	it	were	complete,	would	form	the
vertical	of	the	triangle.	Between	his	fingers	and	its	lowest	tip	is	a	gap,	such	a	gap
as	separates	the	finger	of	God	from	the	finger	of	Adam	in	the	ceiling	of	the
Sistine	Chapel.	The	triangle	is	not	this	man’s	creation.	It	is	as	old	as	the
universe,	as	old	as	truth.

There	is	no	argument	but	that	this	monument	captures	Western	civilization’s
image	of	Pythagoras,	a	native	son	of	this	magical	island.	The	triangle	is	his
classic	symbol	.	.	.	but,	more	authentically,	he	has	become	the	icon	of	an
unexplained	but	undeniable	gift:	the	ability	of	human	minds	to	connect	with	the
bedrock	rationality	of	the	universe.

Behind	all	the	veneration	of	Pythagoras	and	the	undeniably	great	heritage
attributed	to	him	and	his	followers,	behind	the	assumptions	about	his
accomplishments,	the	uncritical	early	biographies,	the	legends,	the	debunkings,
the	forgeries,	there	was	a	real	person.	Who	he	was,	actually—except	for	illusive
wisps	of	information—is	lost	in	the	past.

Pythagoras	and	the	devotees	who	surrounded	him	during	his	lifetime	were
obsessively	secretive.	As	far	as	is	known,	they	left	no	writings	at	all.	There	is	no
scroll,	no	text,	no	fragment,	no	firsthand	account	by	any	witness,	no	artifact	for
archaeologists	to	scrutinize,	no	tablet	to	decipher.	If	such	ever	existed,	they	no
longer	did	by	late	antiquity.	The	earliest	written	evidence	about	Pythagoras
himself	that	modern	scholarship	accepts	as	genuine	consists	of	six	short
fragments	of	text	from	the	century	after	his	death,	found	not	in	their	originals	but
in	works	of	ancient	authors	who	either	saw	the	originals	or	were	quoting	from
earlier	secondary	copies.	The	Pythagorean	doctrine	of	reincarnation	is	the
subject	of	three	of	these	fragments,	two	of	which	also	mention	Pythagoras’



courage,	knowledge,	and	wisdom.	Two	others	are	scornful	and	derogatory.	The
sixth	is	a	backhanded	compliment	in	the	middle	of	an	unrelated	story	by	the
historian	Herodotus,	who	termed	Pythagoras	“by	no	means	the	feeblest	of	the
Greek	sages.”	None	name	any	discoveries,	pinpoint	any	quotable	wisdom	or
scientific	contribution,	or	give	biographical	details.	Though	some	treatises	about
Pythagoras	tell	you	that	his	contemporaries	seem	not	to	have	been	aware	of	his
existence,	that	was	not	the	case,	for	all	these	fragments	assume	that	Pythagoras
was	a	famous	man	whose	name	readers	would	recognize.	That,	of	course,	has
continued	to	be	true	for	two	thousand,	five	hundred	years,	in	spite	of	the	fact	that
as	early	as	the	time	of	Plato,	in	the	fourth	century	B.C.,	Pythagoras	and	the
Pythagoreans	were	already	a	mystery,	and	today	they	are	often	described	as	“an
ancient	cult	about	whom	almost	nothing	is	known.”

Those	six	early	fragments	are	not,	however,	the	full	extent	of	the	available
evidence	about	the	Pythagoreans—those	men	and	women	who	followed
Pythagoras	during	his	lifetime	and	who	in	later	generations	went	on	trying	to
live	out	his	teachings.	Philolaus,	a	not-so-secretive	Pythagorean,	wrote	a	book
fifty	to	seventy-five	years	after	Pythagoras’	death,	revealing	that	early
Pythagoreans	proposed	that	the	Earth	moves	and	is	not	the	center	of	the	cosmos.
Plato	knew	Pythagoreans	in	the	fourth	century	B.C.,	was	strongly	influenced	by
the	idea	of	the	role	of	numbers	in	nature	and	creation,	and	tried	to	incorporate
what	he	thought	of	as	a	Pythagorean	curriculum—the	“quadrivium”—at	his
Academy	in	Athens.	Aristotle	and	his	pupils	wrote	extensively	about	the
Pythagoreans	a	few	years	later,	relying	on	earlier	material	that	still	existed	then
but	has	since	vanished,	and	on	carefully	chosen	living	spokesmen	for	the	oral
tradition,	before	a	time	when	that	became	contaminated	by	forgeries.	This
present	book	will	return	frequently	to	the	issues	of	evidence	and	how	it	was	and
is	evaluated.	It	seems	no	other	group	has	ever	made	such	an	effort	to	remain
secret,	or	succeeded	so	well,	as	the	Pythagoreans	did—and	yet	become	so
celebrated	and	influential	over	such	an	astonishingly	long	period	of	time.

In	an	attempt	to	cut	through	the	multilayered	veil	of	twenty-five	centuries
that	hangs	between	us	and	whatever	happened	on	the	ancient	isle	of	Samos	and
in	the	harbor	city	of	Croton,	skeptical	twentieth-century	historians	insisted	on
discarding	all	but	the	most	concrete,	“hard”	historical	evidence.	Though
certainly	they	were	right	to	believe	a	corrective	was	needed,	they	arguably
pruned	too	much,	applying	standards	of	their	own	time	to	an	era	for	which	it	was
inappropriate	and	even	misleading	to	do	so.	The	tiny	“core	of	truth”	left	after
discounting	all	folk	wisdom,	semi-historic	tradition,	legend	or	what	might	be
only	legend,	and	blatant	forgeries	and	inventions	can	be	stated	in	one	paragraph:



Pythagoras	of	Samos	left	his	native	Aegean	island	in	about	530	B.C.	and
settled	in	the	Greek	colonial	city	of	Croton,	on	the	southern	coast	of	Italy.
Though	the	date	of	his	birth	is	not	certain,	he	was	probably	by	that	time	about
forty	years	old	and	a	widely	experienced,	charismatic	individual.	In	Croton,	he
had	a	significant	impact	as	a	teacher	and	religious	leader;	he	taught	a	doctrine	of
reincarnation,	became	an	important	figure	in	political	life,	made	dangerous
enemies,	and	eventually,	in	about	500	B.C.,	had	to	flee	to	another	coastal	city,
Metapontum,	where	he	died.	During	his	thirty	years	in	Croton,	some	of	the	men
and	women	who	gathered	to	sit	at	his	feet	began,	with	him,	to	ponder	and
investigate	the	world.	While	experimenting	with	lyres	and	considering	why
some	combinations	of	string	lengths	produced	beautiful	sounds	and	others	did
not,	Pythagoras,	or	others	who	were	encouraged	and	inspired	by	him,	discovered
that	the	connections	between	lyre	string	lengths	and	human	ears	are	not	arbitrary
or	accidental.	The	ratios	that	underlie	musical	harmony	make	sense	in	a
remarkably	simple	way.	In	a	flash	of	extraordinary	clarity,	the	Pythagoreans
found	that	there	is	pattern	and	order	hidden	behind	the	apparent	variety	and
confusion	of	nature,	and	that	it	is	possible	to	understand	it	through	numbers.
Tradition	has	it	that,	literally	and	figuratively,	they	fell	to	their	knees	upon
discovering	that	the	universe	is	rational.	“Figuratively,”	at	least,	is	surely
accurate,	for	the	Pythagoreans	embraced	this	discovery	to	the	extent	of	allowing
numbers	to	lead	them,	perhaps	during	Pythagoras’	lifetime	and	certainly	shortly
after	his	death,	to	some	extremely	farsighted	and	also	some	off-the-wall,
premature	notions	about	the	world	and	the	cosmos.

One	might	assume	that	the	above	paragraph	is	a	summary	merely	touching
the	highlights	of	what	is	known	about	events	in	sixth-century	B.C.	Croton,	but	it
is,	in	fact,	all	that	is	known.	Though	you	and	I	might	wish	to	ask	many	more
questions,	the	answers	are	irretrievably	lost.	No	one	can	claim	to	tell	how
Pythagoras	and	his	followers	arrived	at	the	religious	and	philosophical	doctrines
they	espoused,	or	even	precisely	what	these	were	.	.	.	or	in	what	specific	ways
Pythagoras	and	his	followers	influenced	and	changed	the	culture	and	civic
structure	of	Croton	and	the	surrounding	area	.	.	.	or	whether	whatever	caused
Pythagoras	and	his	followers	to	make	such	volatile	enemies	was	something	we
would	condemn	or	applaud	today	.	.	.	or	whether	the	great	discovery	in	music	of
the	power	of	numbers	to	reveal	truth	about	the	universe	was	made	by	Pythagoras
himself.	It	may	come	as	a	particular	surprise	that	there	has	been	no	mention	of	a
Pythagorean	triangle	or	a	Pythagorean	theorem	in	this	“core	of	knowledge”
about	Pythagoras.

While	historians	in	the	twentieth	century	were	clearing	the	deck,



archaeologists	were	also	playing	a	role	in	bringing	down	the	legendary
Pythagoras.	They	uncovered	evidence	that	the	“Pythagorean	theorem”	(or	the
“Pythagorean	rule,”	for	“theorem”	implies	a	concept	that	was	unrecognized	this
early)	was	known	long	before	Pythagoras.	Those	revelations	were	not	the	end	of
the	discussion,	for	with	regard	to	such	knowledge,	there	is	more	to	be	answered
than	the	question	of	who	had	it	“first.”	The	way	it	passed—or	may	have	passed
—or	failed	to	pass—from	society	to	society	and	era	to	era	is	a	complex,
fascinating	subject.	Was	it	known	and	then	lost?	Or	only	partly	lost?	Were	there
separate	discoveries?	Equally	significant	is	the	way	different	societies	and	eras
regarded	such	knowledge,	what	meaning	they	attached	to	it.	Was	it	useful	for
surveying	and	building?	Was	it	valued	for	the	way	it	helped	produce	beautiful
design?	Was	it	considered	holy?	Was	it	something	to	be	shared,	or	to	be	held	in
strictest	secrecy,	or	taught	only	to	a	few?	Was	it	intriguing	in	and	of	itself?	Or
did	it	imply	something	about—or	raise	questions	about—the	nature	of	all	being?
Did	it	buttress,	or	tear	down,	a	trust	in	the	power	of	numbers	to	uncover	secret
truth	about	the	universe?	Was	there	a	“proof”?	What	constituted	“proof”	before
the	modern	concept	of	“proof”?	With	questions	like	those,	the	origin	of	the
“Pythagorean	theorem”	becomes	an	extremely	interesting	and	complicated	issue.

Numbers	and	mathematics	had	been	in	use	for	eons	before	Pythagoras	was
born,	sometimes	with	more	sophisticated	understanding	than	his	and	his
followers’.	Their	insight	in	the	realm	of	music	was	extraordinary	in	a	different
way—different	from	the	practical	use	of	numbers	or	from	an	artist’s	appreciation
for	a	beautiful	geometric	figure.	Different	even	from	the	more	abstract	thinking
of	an	early	Babylonian	teacher	or	student	who	found	it	an	interesting	exercise	to
do	the	math	for	a	grain	pile	far	larger	than	could	ever	be	constructed.	Imagine	a
carpenter	looking	at	the	hammer	and	chisel	that	he	holds	in	his	hands,	that	he	has
been	taking	for	granted	as	a	useful	part	of	his	daily	work,	and	in	an	instant	of
dumbfounded	recognition	seeing	that	he	holds	the	keys	to	unlock	the	doorway	to
vast	hidden	knowledge.	That	was	what	numbers	became	for	the	Pythagoreans
and,	through	them,	for	the	future.	With	this	fresh	appreciation—indeed,
veneration—of	the	power	of	numbers,	Pythagoras	and	his	followers	made	one	of
the	most	profound	and	significant	discoveries	in	the	history	of	human	thought.
They	stood	at	the	sort	of	threshold	that	humanity	has	crossed	only	a	few	times.
This	particular	door	would	not	close	again.

The	brutally	pared-down	picture	of	Pythagoras	and	the	events	of	his	life
offered	by	the	twentieth	century	was	no	more	satisfactory	a	representation	than
the	one	that	overcredulous	earlier	centuries	had	accepted.	All	that	could	be	said
for	it	was	that	it	was	probably	not	wrong.	But,	for	me,	it	has	caused	a	dramatic



refocusing	of	my	attention	onto	the	enormous,	rich,	multilayered,	continuously
reimagined	story	of	“Pythagoras”—as	seen	separately	from	the	life	and	person
of	the	historical	Pythagoras.	That	is	the	reason	this	book	ends	in	the	twenty-first
century	rather	than	in	antiquity.

Amazingly	it	is	the	uncertainty	about	what	really	occurred	and	who
Pythagoras	really	was	and	what	he	accomplished	that	has	allowed	something
astounding	to	happen	through	the	centuries.	One	truly	powerful	idea	did	come
authentically	from	Pythagoras	and	his	earliest	followers—the	recognition	that
numbers	are	a	pathway	from	human	ignorance	to	an	understanding	of	the
deepest	mysteries	of	a	universe	that	on	some	profound	level	makes	perfect	sense
and	is	all	of	a	piece.	That	vision	has	been	a	premier	guide	in	the	development	of
science	and	remains	so	today.	However,	the	scarcity	of	sure	knowledge	about
nearly	everything	else	connected	with	Pythagoras	and	the	Pythagoreans	has
encouraged	generation	after	generation,	beginning	as	early	as	Plato	and	still
continuing	in	the	twenty-first	century,	to	reimagine	him,	to	recreate	him,	to
fashion	their	own	variations	on	the	theme	of	Pythagoras.	As	composers	do	in
music,	such	figures	as	Plato,	Aristotle,	Ptolemy,	Copernicus,	Kepler,	heroes	of
the	French	Revolution,	Bertrand	Russell,	Einstein,	and	those	who	are	now
seeking	extraterrestrial	intelligence	have	taken	a	very	slim	theme	indeed	and
composed	intricate,	sometimes	whimsical,	sometimes	weird,	often	magnificent
variations—a	metaphor	not	inappropriate	for	a	story	that	began	with	the	strings
of	a	lyre.

Two	and	a	half	millennia	of	writing	and	thinking	and	myth-making	and
composing	variations	about	Pythagoras	in	one	context	after	another,	with	one
agenda	after	another,	have	of	course	multiplied	the	difficulties	for	a
“biographer.”	Even	more	difficult	to	sort	out	than	the	outspoken	detractors	and
obvious	distortions	and	forgeries	are	those	who,	encountering	Pythagorean	or
pseudo-Pythagorean	thought,	have	joyfully	recognized	its	links	with	their	own
thoughts	and	taken	off	from	there,	calling	it	all	Pythagorean,	even	attributing
their	best	ideas	to	Pythagoras	himself—as	Isaac	Newton,	of	all	people,	did.	Or
calling	none	of	it	Pythagorean,	but	leaving	the	way	open	for	others	to	say	it	was.
Perhaps	an	author	should	abandon	all	hope	of	nonfiction	and	write	a	novel.	To	a
certain	extent,	that	is	what	two	and	a	half	millennia	have	written.

All	of	which	might	cause	one	to	conclude	that	this	book	must	be	a
postmodern	parable.	It	would	be	difficult	to	find	a	better	example	of	ideas,	a	life
story,	or	a	person	being	reimagined	time	after	time,	century	after	century.
Instead,	I	have	come	to	see	“Pythagoras”	as	a	cubist	painting,	a	Picasso	or	a
Braque—either	of	whom	would	have	insisted	that	there	is	more	truth	in	their
cubist	paintings	than	in	a	photolike	portrait.	Life	and	history	are	impossible	to	fit



cubist	paintings	than	in	a	photolike	portrait.	Life	and	history	are	impossible	to	fit
together	in	a	completely	satisfying,	coherent	picture—and	are	continually
reinvented	in	the	eye	of	the	beholder.

This	book	begins	with	something	resembling	a	conventional	“biography,”
indulging	in	calculated	speculation,	recounting	legends	and	rumors,	reporting
intriguing	and	sometimes	conflicting	information,	trying	to	discern	what	most
likely	happened—or	might	have	happened—given	the	time	and	place	and
context.	Much	of	the	information	comes	through	the	research	of	three	authors
who	wrote	biographies	of	Pythagoras	seven	to	eight	hundred	years	after	his
death,	in	the	third	and	early	fourth	centuries	A.D.,	who	in	their	time	pieced
together	second-,	third-,	and	fourth-hand	accounts,	legends	and	hearsay,	oral
tradition,	what	people	believed	or	guessed,	and	other	writers’	references	to	lost
works—ancient	material	that	ranges	from	the	reliable	to	the	well-meaning	and
intelligent	to	the	ridiculous.	Pythagoras	was	already	a	cubist	painting,	but	these
three	accounts	more	than	any	other	sources	have	influenced	what	the	world	has
thought	it	knew	and	still	thinks	it	knows	about	him.

From	the	time	of	those	biographies,	the	Pythagorean	story	wound	its	way
into	the	Middle	Ages	and	eventually	into	the	modern	world.	It	followed	what	is
by	no	means	a	satisfying	linear	path.	There	are	threads	and	trends,	but	more
remarkable	is	the	unavoidable	impression	that	the	idea	of	Pythagoras	existed	and
still	exists	on	an	almost	subliminal	level.	It	shows	up	not	only	where	you	might
expect	it,	underpinning	the	work	of	Copernicus,	Kepler,	Newton,	and	Stephen
Hawking,	but	also	in	odd,	unlikely	places	such	as	the	architecture	of	Palladio
and	the	philosophical	interpretation	of	the	French	Revolution,	and	a
grandfatherly	figure	in	a	novel	by	Louisa	May	Alcott.	In	spite	of	all	the
twentieth-century	skepticism,	impressive	thinkers	like	Bertrand	Russell,	Arthur
Koestler,	and	Jacob	Bronowski	regarded	Pythagoras	as	a	towering,	foundational
figure.	Pythagorean	principles	have	become	imbedded	in	our	worldview,	and	the
original	Pythagorean	cracking	of	the	code	underpins	the	continuing	development
of	science.

Lament	the	lost	story	of	the	life	and	person	of	Pythagoras,	if	you	will,	but
join	me	in	attempting	to	understand	why	and	how	it	has	birthed	and	nurtured
such	a	rich	tradition	and	wealth	of	interpretation,	and	in	celebrating	what	is	not	a
myth	or	a	lie	or	even	a	legend	.	.	.	but	one	beautiful	instance	of	realization	about
the	truth	of	the	universe.



CHAPTER	1

The	Long-haired	Samian
Sixth	Century	B.C.

IN	IMPERIAL	ROME,	THERE	WAS	a	popular	myth	that	the	ancient	sage	Pythagoras
had	been	the	son	of	Apollo.	The	story	was	spread	in	the	first	century	A.D.	by
Apollonius	of	Tyana,	an	itinerant	wonder-worker	who	claimed	he	was	the
reincarnated	Pythagoras	and	could	speak	with	authority.	The	empress	Julia
Domna,	wife	of	the	emperor	Septimus	Severus,	saw	to	it	that	Apollonius’	tales
were	well	publicized,	in	the	hope	of	rivaling	Jesus	of	Nazareth,	whose	followers
believed	that	he	was	the	son	of	the	god	of	the	Hebrews.

A	century	after	Julia	Domna	(eight	centuries	after	Pythagoras),	the	story	of
Pythagoras’	divine	patrimony	came	into	the	hands	of	the	neo-Platonist
philosopher	and	historian	Iamblichus	of	Chalcis,	who	was	writing	a	book	titled
Pythagorean	Life.1	Living	in	a	superstitious	age,	he	was	not	a	particularly
skeptical	biographer	when	it	came	to	the	miraculous.	He	weighed	carefully	not
whether	he	should	believe	“marvelous”	tales,	but	which	to	believe,	and	he
balked	at	the	report	that	Pythagoras	was	descended	from	a	god.	It	was	“by	no
means	to	be	admitted.”	Iamblichus	did	not,	however,	merely	ignore	myths	that
he	could	not	accept	as	truth,	nor	should	a	historian	have	done	so	when	sorting
out	the	sixth	century	B.C.—this	era	that	Jacob	Bronowski	called	the	“hinge	of
legend	and	history.”	Iamblichus	liked	to	speculate	about	why	a	myth	had	arisen.
Here	is	his	version	of	Pythagoras’	birth	story,	sanitized	of	what	he	saw	as	unduly
supernatural	details:

In	the	first	third	of	the	sixth	century	B.C.,	a	merchant	seaman	named
Mnesarchus	embarked	on	a	voyage,	unaware	that	his	wife	was	in	the	early	stages
of	pregnancy.	As	most	important	merchants	of	his	time	who	had	the	opportunity
would	have	done,	he	included	Delphi	on	his	itinerary	and	enquired	of	the	oracle
—the	Pythian	Apollo—whether	the	remainder	of	his	venture	would	be	a	success.
The	oracle	replied	that	the	next	portion	of	the	journey,	to	Syria,	was	going	to	be
particularly	productive.	Then	the	oracle	changed	the	subject:	Mnesarchus’	wife
was	already	pregnant	with	a	son	who	would	be	surpassingly	beautiful	and	wise,
and	of	“the	greatest	benefit	to	the	human	race	in	everything	pertaining	to	human
achievements.”	This	was	an	astounding	pronouncement,	but	Iamblichus	insisted



it	was	no	indication	that	the	son	was	not	Mnesarchus’	child.	It	was	to	honor	the
oracle,	not	to	imply	the	patrimony	of	Apollo,	that	Mnesarchus	changed	his
wife’s	name	from	Parthenis	to	Pythais	and	decided	to	name	the	boy	Pythagoras.
The	voyage	continued,	and	Pythais	gave	birth	at	Sidon	in	Phoenicia.	Then	the
family	returned	to	their	home	on	the	island	of	Samos.	As	the	oracle	had
predicted,	the	mercantile	venture	had	been	a	success	and	added	substantially	to
their	wealth.	Mnesarchus	erected	a	temple	to	the	Pythian	Apollo.	No	identifiable
trace	of	it	has	survived,	but	Samos	is	sprinkled	with	the	ruins	of	temples	and
shrines	from	that	period	that	cannot	now	be	attributed	either	to	a	particular	god
or	donor.

The	two	other	authors	who	lived	during	the	time	of	the	Roman	Empire	and
wrote	“lives”	of	Pythagoras	in	the	third	and	early	fourth	centuries	A.D.—
Diogenes	Laertius	and	Porphyry—were	in	agreement	with	Iamblichus	that	there
was	ample	evidence	Pythagoras’	mother	Pythais	was	descended	from	the	earliest
colonists	on	Samos.2*	However,	there	is	no	other	part	of	Pythagoras’	life	story,
until	the	events	surrounding	his	death,	about	which	the	discussion	among	them
became	so	animated	and	contradictory	as	it	did	regarding	his	father	Mnesarchus’
origins.	Iamblichus’	research	indicated	that	both	parents	traced	their	ancestry	to
the	first	colonists	on	Samos.	Porphyry	was	in	possession	of	a	conflicting	report
from	a	third	century	B.C.	historian	named	Neanthes—a	stickler	for	juxtaposing
conflicting	pieces	of	information—that	Mnesarchus	was	not	Samian	by	birth.
Neanthes	had	had	it	from	one	source	that	Mnesarchus	was	born	in	Tyre	(in
Syria)	and	from	another	that	he	was	an	Etruscan	(Tyrrhenian)	from	Lemnos.	The
similarity	of	the	names	“Tyre”	and	“Tyrrhenian”	had	perhaps	caused	the
confusion.	Porphyry	referred	to	an	additional	source,	a	book	with	an	enticing
title,	On	the	Incredible	Things	Beyond	Thule,	that	also	mentioned	Mnesarchus’
Etruscan	and	Lemnos	origins.	Diogenes	Laertius,	the	earliest	of	the	three
biographers,	pointed	out	that	the	responsible	ancient	historian	Aristoxenus	of
Tarentum—with	excellent	contacts,	such	as	Dionysius	the	Younger	of	Syracuse
and	Pythagoreans	in	the	fourth	century	b.c.—also	had	said	Mnesarchus	was	a
Tyrrhenian.	All	three	biographers	agreed	that	if	Mnesarchus	was	not	Samian	by
birth,	he	was	naturalized	on	Samos.	Diogenes	Laertius	also	threw	in	that	he	had
learned	from	one	Hermippus,	a	native	of	Samos	in	the	third	century	B.C.,	that
Mnesarchus	was	a	gem	engraver.

The	island	of	Samos,	Pythagoras’	childhood	home,	is	the	most	precipitous
and	thickly	forested	of	the	Greek	islands.	Jacob	Bronowski	called	it	a	“magical
island.	Other	Greek	islands	will	do	as	a	setting	for	The	Tempest,	but	for	me	this
is	Prospero’s	island,	the	shore	where	the	scholar	turned	magician.”3	The	boy



Pythagoras	would	have	been	familiar	with	forest-clad	mountain	slopes,	deep
wooded	gorges,	and	misty	outlines	of	half-barren	coastlines	on	a	cobalt	sea.	For
a	family	of	the	landholding	class,	life	in	the	countryside,	in	this	climate	where
flowers	bloom	most	of	the	year	and	grape	vines	and	olive	groves	proliferate,	was
pleasant,	probably	luxurious,	even	more	so	with	goods	Mnesarchus	brought
home	from	trips	abroad.	In	poetry	of	which	only	fragments	survive,	Asius
described	the	Samian	aristocracy	as	wearing	“snow-white	tunics,”	“golden
brooches,”	“cunningly	worked	bracelets,”	and	wrote	of	their	“tresses”	that
“waved	in	the	wind	in	golden	bands.”4

In	the	port	city	and	the	precincts	of	Samos’	temple	of	the	goddess	Hera	were
goods,	treasures,	and	curiosities	to	carry	a	young	man’s	imagination	to	the
borders	of	the	world.	The	temple	had	acquired	a	collection	of	valuable
ornaments	from	Iran,	Mesopotamia,	Libya,	Spain,	and	even	farther	away.
Archaeologists	have	found	no	other	Greek	site	so	rich	in	foreign	material,	no
ancient	site	anywhere	with	so	wide	a	geographical	spectrum	of	offerings.	Not
only	Hera	acquired	treasures.	Imported	household	and	luxury	items	brought
foreign	textures,	smells,	and	colors	into	Samian	homes	and	no	doubt	fed	the
dreams	and	adventurous	spirits	of	young	men	like	Pythagoras	and	his	brothers.
Samos	was	in	close	touch	with	the	much	more	ancient	and	mysterious	culture	of
Mesopotamia.

What	is	known	of	Samos’	history	is	a	combination	of	folk	memory,	oral
history,	and	archaeology.	By	legend,	the	first	settlers	were	led	by	Ankaios,	a
hero	son	of	Zeus	who	had	sailed	with	Hercules	and	Orpheus	on	the	voyage	of
the	Argonauts	in	pursuit	of	the	Golden	Fleece.	At	the	behest	of	the	Pythian
oracle	at	Delphi,	Ankaios	had	decided	to	establish	a	colony	and	brought	families
from	Arcadia,	Thessaly,	Athens,	Epidaurus,	and	Chalcis.	The	oracle	dictated	the
name	of	the	future	great	city	of	the	island,	Samos.	“Sama”	implied	great	heights,
and	Samos	has	high	mountains.	Ancient	stories	traced	Pythagoras’	family’s
lineage	to	Ankaios	himself.

Today,	more	than	thirty	centuries	after	Samos	was	pioneer	territory,
archaeologists	are	able	to	put	dates	to	the	stories.	They	agree	that	the	ancient
history	of	Samos	was	largely	consistent	with	legend.	Ionians	from	Epidauria
arrived	in	the	late	second	millennium	B.C.,	and	the	Pythian	oracle	at	Delphi	was
busy	in	operation	then,	though	Apollo	was	not	yet	associated	with	it.	The
colonists	who	came,	perhaps	led	by	Ankaios,	were	part	of	large	migrations	from
mainland	Greece	to	the	islands	of	the	eastern	Aegean	and	the	shores	of	Asia
Minor.

Archaeologists	have	also	discovered	that	these	Ionian	settlers	were	not	the
first	to	set	foot	on	Samos,	which	accords	with	another	legend—that	many	of	the



first	to	set	foot	on	Samos,	which	accords	with	another	legend—that	many	of	the
Mycenaeans	who	besieged	Troy	and	sent	the	great	wooden	horse	into	the
doomed	city	settled	on	the	Turkish	coast	and	nearby	islands.	Excavations	show
that	there	were	people	living	on	Samos	more	than	a	thousand	years	before	the
Ionian	settlers,	and	some	were	probably	Mycenaean.	Any	who	arrived	after	the
Trojan	War	were	actually	relative	latecomers.

Perhaps	it	helped	smooth	relations	between	that	earlier	population	and	the
new	Ionian	colonists	that	the	newcomers	immediately	recognized	the	prehistoric
fertility	“Mother	Goddess”	of	Samos	as	the	goddess	they	already	knew	and
worshipped	as	Hera.	So	strong	was	the	conviction	that	this	was	Hera,	that	a	site
sacred	to	the	Mother	Goddess,	on	the	banks	of	the	Samian	river	Imbrasos,	was
identified	as	Hera’s	birthplace.	A	wicker	bush	there	was	believed	to	have
sheltered	her	birth.	By	the	time	Pythagoras	was	born,	what	for	millennia	had
been	a	plain	stone	altar	and	a	simple	structure	protecting	a	wooden	effigy	and	a
wicker	bush	had	become	one	of	the	most	magnificent	temple	complexes	in	the
world.	The	great	temple	of	Artemis	at	Ephesus,	nearby	across	the	Strait	of
Samos,	did	not	quite	succeed	in	copying	its	splendor.

Before	the	second	millennium	B.C.	ended,	another	wave	of	settlers,	this	one
led	by	a	man	named	Prokles,	from	Pityous,	disembarked	on	the	beaches	of
Samos	and	seized	control	of	the	island.	Prokles’	people	ruled	for	about	four
hundred	years,	until	the	eighth	century	B.C.	Then	the	descendants	of	the	earlier
settlers	turned	the	tables.	These	wealthy	landowners	called	themselves
Geomoroi,	or	“those	who	shared	out	the	land.”	The	period	of	their	dominance
was	the	“geometric”	period,	a	term	that	applied	not	only	on	Samos	but	to	a	phase
of	history	in	the	surrounding	Greek	areas	as	well.5	The	word	“geometry”	came
from	the	way	the	Geomoroi	“geometrically”	divided	up	their	land.	Pythagoras’
ancestors,	at	least	on	his	mother’s	side,	were	among	them.

The	centuries	of	Geomoroi	rule	were	an	era	of	increasing	prosperity	for
Samos,	and	also	the	time	when	the	richest	cultural	interchange	occurred	between
her	and	the	peoples	of	Egypt	and	the	Near	East.	Her	location	near	the	west	coast
of	present-day	Turkey	placed	Samos	at	the	crossroads	of	the	great	sea-trading
routes	that	linked	the	Black	Sea	with	Egypt,	and	Italy	and	mainland	Greece	with
the	Orient.	The	mainland	coast	across	the	narrow	Strait	of	Samos	was	the
western	terminus	of	overland	trading	routes	that	brought	caravans	bearing	exotic
goods	from	the	East.	Samos	became	a	hub	for	ships	that	traveled	all	over	the
known	world.	Her	sailors	took	larger,	innovative	new	vessels,	designed	and
constructed	by	Samian	shipbuilders,	beyond	the	Straits	of	Gibraltar,	perhaps
even	to	southern	England.	The	semi-mythical	Kolaios	reputedly	made	that



voyage	and	donated	a	tithe	of	his	profits	to	Hera’s	temple.	Samos	controlled
fertile	areas	across	the	strait	on	the	mainland,	ensuring	an	ample	grain	supply.
By	the	sixth	century	B.C.,	when	Pythagoras	was	born,	she	was	founding	colonies
in	Minoa,	Thrace,	and	Cilicia.	Samian	expatriates	were	living	in	Egypt,
bolstering	trade	relations	with	the	pharaohs.

Though	the	island’s	prosperity	continued	to	soar,	the	era	of	Geomoroi	rule
had	ended	by	the	time	Pythagoras	was	born.	In	the	late	seventh	century	B.C.,	the
aristocratic	Geomoroi	had	succumbed	to	a	tyrannical	regime.	The	takeover
reputedly	occurred	while	most	citizens	were	outside	the	city	at	the	temple,
enjoying	a	festival	of	the	goddess.

Pythagoras	was	born	in	about	570	B.C.,	or	perhaps	a	little	earlier.	Kolaios
would	have	returned	at	about	that	time	from	his	heroic	voyage.	Though	the
Geomoroi	had	lost	control	of	the	island,	Samos’	climb	toward	her	economic	and
cultural	zenith	continued.	This	was	her	golden	age.	For	Pythagoras’	mother’s
Geomoroi	family,	the	ascent	of	the	tyranny	must	have	been	a	serious	blow	in
terms	of	power	and	perhaps	wealth.	However,	Mnesarchus	was	a	merchant
whose	commercial	situation	would	have	improved	rather	than	suffered	in	the
upheaval.	Theirs	was	surely	a	fortuitous	marriage,	with	Parthenis	bringing	her
family’s	ancient	aristocratic	heritage	and	lands,	and	Mnesarchus	bringing	a
newer	fortune	earned	in	the	thriving	Samian	mercantile	empire.

Mnenarchus’	profession	makes	it	likely	that	Pythagoras	did	not	spend	his
entire	childhood	and	youth	on	Samos.	According	to	the	historian	Neanthes	(one
of	the	most	reliable	sources	used	by	the	three	biographers),	he	traveled	to	Tyre
and	Italy	and	elsewhere	with	his	father.	Also	according	to	Neanthes,	and	others
as	well,	he	had	two	older	brothers,	Eunostus	and	Tyrrhenus,	and	perhaps	a	foster
brother	to	share	these	adventures.	If	the	story	is	correct	that	Pythagoras’	father
was	not	only	a	merchant	but	also	a	gem	engraver,	then	his	sons	would	have	been
trained	in	that	craft.	Iamblichus	was	sure	that	Pythagoras	had	the	best	possible
schooling	and	studied	with	learned	men	on	Samos	and	even	in	Syria,	especially
with	“those	who	were	experts	in	divinity.”	It	is	plausible	that	the	family
continued	to	have	trading	or	personal	connections	with	the	area	around	Sidon,	in
Syria,	where	Iamblichus’	biography	said	Pythagoras	was	born.

Describing	Pythagoras	as	a	youth,	Iamblichus	strayed	into	the	over-blown
adulation	that	he	would	adopt	in	later	chapters	of	his	book,	but	a	more	realistic
picture	emerges	of	a	young	man	gifted	with	a	natural	grace	and	manner	of
speech	and	behavior	that	made	a	good	impression	even	on	people	much	older
than	himself.	Iamblichus	wrote	that	he	was	serene,	thoughtful,	and	without
eccentricity.	Statues	in	Samos’	museums—kouroi,	dating	from	that	period—



suggest	that	this	was	the	ideal:	a	human	youth,	but	hinting	at	something	more
centered,	mysterious,	and	holy.

On	Samos,	Pythagoras	was	at	the	epicenter	of	the	commercial	world,	but	not
at	the	epicenter	of	Greek	science	and	natural	philosophy.	He	was,	however,	only
a	narrow	strait	away	from	Miletus,	where	Thales,	called	“the	first	to	introduce
the	study	of	nature	to	the	Greeks,”	had	his	headquarters.	About	fifteen	years
before	Pythagoras’	birth,	Thales	observed	and	recorded	an	eclipse.	That	event
has	been	taken	to	mark,	or	at	least	to	symbolize,	the	beginning	of	Greek	science
and	natural	philosophy,	and,	because	Thales’	observation	was	an	eclipse,	it	is
possible	to	identify	the	date:	May	28,	585	B.C.

Little	is	known	about	Thales	except	that	he	studied	nature	and	astronomy
and,	unsatisfied	with	mythological	explanations,	pondered	questions	about	how
the	world	began	and	what	was	there	before	anything	else.	Plato,	in	his	dialogue
Theaetetus,	used	Thales	as	an	example	of	a	man	too	preoccupied	with	his
studies:

Thales,	when	he	was	star-gazing	and	looking	upward,	fell	into	a
well	and	was	rallied	(so	it	is	said)	by	a	clever	and	pretty	maid-
servant	from	Thrace,	because	he	was	eager	to	know	what	went	on
in	the	heaven	but	did	not	notice	what	was	in	front	of	him,	nay,	at
his	very	feet.6

Thales	did	have	a	practical	side.	He	was	famous	for	coming	up	with	simple,
ingenious	solutions	to	problems	that	stumped	others.	News	probably	reached
Samos,	if	the	story	was	true	(and	even	if	it	was	not),	that	when	the	army	of	King
Croesus,	of	fabled	wealth,	was	brought	to	a	standstill	for	lack	of	a	bridge	over
the	river	Halys,	Thales	had	a	channel	dug	upstream	of	their	position	that	diverted
the	river	to	the	other	side	of	the	army,	so	that	without	having	moved	a	step	they
found	they	had	crossed	it.7

It	might	be	said	that	Thales	had	a	special	affinity	for	water,	be	it	in	the	river
or	the	well,	for	he	thought	that	water	itself	was	the	first	principle	from	which	all
other	things	had	sprung,	and	that	the	world	itself	floats	on	water	“like	a	log	or
something	else	of	that	sort,”	as	Aristotle	later	commented	a	bit	dismissively.
Pythagoras’	biographer	Diogenes	Laertius	wrote	that	Thales	lived	to	be	so	old
that	he	“could	no	longer	see	the	stars	from	the	earth.”	He	was	known	as	one	of
the	“Seven	Sages”	of	early	Greek	history,	each	of	whom	was	connected	with	one
great	saying;	Thales’	was	“Water	is	best.”	Would	that	all	philosophers	had	been
so	concise.



Growing	up	on	Samos,	Pythagoras	surely	knew	about	Thales.	Iamblichus
thought	that	he	made	trips	across	the	strait	even	in	his	early	youth	to	sit	at	the
feet	of	the	elderly	sage.	Pythagoras	acquired	a	nickname:	“the	long-haired
Samian.”	Apollonius	the	wonder-worker	provided	Pythagoras’	biographers	with
the	information	that	Pythagoras	also	studied	with	the	astronomer	Anaximander,
another	scholar	at	Miletus.	As	was	true	of	Thales,	one	date	is	fairly	firmly
associated	with	Anaximander:	he	was	sixty-four	years	old	when	he	died	in	546.
He	would	have	been	in	his	mid-twenties	when	Thales	recorded	the	eclipse,	and
middle-aged	to	elderly	by	the	time	Pythagoras	could	have	been	his	pupil.

Anaximander	himself	may	have	been	a	pupil	of	Thales,	but	their	ideas	were
not	alike.	Anaximander	used	mathematics	and	geometry	in	attempts	to	chart	the
heavens	and	the	Earth,	and	he	drew	one	of	the	earliest	maps	of	the	world.	To	a
young	man	eager	to	acquire	cutting-edge	knowledge,	it	would	have	been
intriguing	to	learn	that	Anaximander	rejected	ideas	that	the	Earth	floated	on
anything	or	hung	from	anything	or	was	supported	from	elsewhere	in	the
heavens.	The	Earth,	said	Anaximander,	remains	motionless	and	in	place	because
the	universe	is	symmetrical	and	the	Earth	has	no	reason	to	move	in	one	direction
and	not	another.	He	introduced	the	notion	of	the	“limitless”	or	“unlimited”	as
fundamental	to	all	things.	This	idea	surfaced	again	prominently	when
Pythagorean	doctrine	was	written	down	by	Philolaus	in	the	next	century.

For	Anaximander,	when	the	“unlimited”	was	“separated,”	the	result	was
contrasts,	such	as	male-female,	even-odd,	hot-cold.	Contrasts	were	central	to	his
creation	scheme.	Separation	into	opposites	later	became	a	major	element	in
Pythagorean	thinking.	Most	significantly,	Anaximander	believed	that	there	was
unity	underlying	all	the	contrasts,	diversity,	and	multiplicity	in	the	universe—an
idea	that	would	emerge	much	more	strongly	with	the	Pythagoreans.	The	parallels
between	Anaximander	and	the	Pythagoreans	might	seem	to	indicate	that
Pythagoras	must	have	studied	with	Anaximander,	but	Anaximander’s	ideas
could	have	reached	Pythagoras	or	Philolaus	by	other	routes.	The	young
Pythagoras	may	also	have	known	Anaximander’s	pupil	Anaximenes.

Iamblichus	credited	Thales	with	convincing	Pythagoras	to	travel	to	Egypt.
This	kindly,	modest	teacher,	wrote	Iamblichus,	apologized	for	his	extreme	old
age	and	the	“imbecility	of	his	body”	and	urged	his	talented	pupil	to	move	on,
claiming	that	his	own	wisdom	was	in	part	derived	from	the	Egyptians	and	that
Pythagoras	was	even	better	equipped	than	he	had	been	to	benefit	from	their
teaching.	Thales	had	either	visited	Egypt	or	knew	it	from	the	accounts	of	others,
for	he	wrote	a	description	of	the	Nile	floods	(water,	again)	and	speculated	that
they	were	caused	by	winds	blowing	from	the	north	in	the	summer,	which



prevented	the	waters	of	the	river	from	flowing	into	the	Mediterranean.8	Porphyry
thought	that	what	Thales	and	Pythagoras	had	most	to	learn	from	the	Egyptians
was	geometry:	“The	ancient	Egyptians	excelled	in	geometry,	the	Phoenicians	in
numbers	and	proportions,	and	the	Chaldeans	in	astronomical	theorems,	divine
rites,	and	worship	of	the	gods.”	“It	is	said,”	Porphyry	hedged,	that	Pythagoras
learned	from	all	of	them.9

Recounting	the	tales	and	traditions	about	Pythagoras’	associations	with
Thales,	Anaximander,	and	possibly	Anaximenes	on	the	mainland	coast	near
Samos,	and	the	educational	odyssey	he	was	about	to	undertake,	Porphyry	and
Iamblichus	resorted	often	to	those	words	“it	is	said,”	without	revealing	who	said
it.	The	stories	were	part	of	a	long-standing	semi-historical	tradition.
Unfortunately,	in	the	centuries	preceding	Iamblichus,	Porphyry,	and	Diogenes
Laertius,	this	tradition	had	been	embellished	to	the	point	of	pollution	by	a	spate
of	“pseudo-Pythagorean”	literature.	The	three	historians	tried	to	circumvent	this
problem	by	using	earlier	sources,	but	they	could	not,	or	at	least	did	not,
completely	disregard	some	information	that	was	probably	spurious.

The	tradition	that	Pythagoras	studied	with	Thales,	Anaximander,	and
Anaximenes	and	even	visited	Egypt	and	Mesopotamia	is	not	farfetched.	Samos’
position	in	the	world	geographically	and	economically,	and	what	seems	probable
about	Pythagoras’	own	economic	circumstances	and	family,	make	these	stories
credible.	He	had	reason	to	feel	comfortable	in	the	wider	world	because	of	his
father’s	trading	ventures	and	connections,	was	wealthy	enough	to	travel	and
have	the	leisure	to	pursue	an	adventurous,	eclectic	self-education,	and	was
probably	insatiably	curious.	If	Pythagoras	did	not	make	journeys	like	these,	what
could	have	prevented	him?

Iamblichus	wrote	that	Thales	did	not	stop	at	telling	Pythagoras	he	should	go
to	Egypt.	He	warned	him	to	be	sparing	of	his	time	and	careful	about	what	he	ate.
Pythagoras	confined	himself	to	“such	nutriment	as	was	slender	and	easy	of
digestion”	so	that	his	sleep	could	be	short,	his	“soul	vigilant	and	pure,”	and	his
body	in	a	state	of	“perfect	and	invariable	health.”	Perhaps	he	did	follow	his	old
teacher’s	advice	and	succeed	in	maintaining	this	enviable	conditioning,	but
according	to	Iamblichus,	he	did	not	immediately	hasten	to	Egypt.	He	went	by
way	of	Sidon,	probably	his	birthplace.



CHAPTER	2

“Entirely	different	from	the
institutions	of	the	Greeks”

Sixth	Century	B.C.

YOUNG	PYTHAGORAS’	JOURNEY,	as	Iamblichus	recounted	it,	was	the	ancient
equivalent	of	a	high-risk	modern	junior	year	abroad.	He	bedded	down	in	a
temple	on	the	Mediterranean	coast,	at	the	foot	of	Mount	Carmel,	a	mountain
associated	with	the	prophet	Elijah	and	his	God	as	well	as	with	local	pagan
deities.	There	is	a	much-disputed	claim	by	the	historian	Josephus	that	Pythagoras
was	influenced	by	Jewish	teaching.	He	could	have	encountered	it	here,	although
many	of	the	Jewish	population	were	in	exile	in	Babylon.	Iamblichus	wrote	that
he	“conversed	with	prophets”	and	was	initiated	into	the	mysteries	of	Byblos	and
Tyre,	not	for	the	sake	of	superstition,	but	“from	an	anxiety	that	nothing	might
escape	his	observation	which	deserved	to	be	learnt	in	the	arcane	or	mysteries	of
the	gods.”	For	a	man	who	himself	lived	in	a	superstitious	age,	Iamblichus	was
surprisingly	eager	to	emphasize	that	Pythagoras	was	not	influenced	by	the
“superstition”	of	this	area,	though	he	made	no	such	disclaimer	about	what
Pythagoras	might	have	picked	up	in	Egypt	or	Mesopotamia.	Iamblichus	was
writing	at	a	time	when	many	feared	that	Christianity,	with	roots	in	Jewish	belief,
would	destroy	Greek	philosophy.

After	a	while,	Pythagoras	continued	his	journey	to	Egypt,	and	Iamblichus
went	into	greater	narrative	detail	than	usual	to	relate	an	adventurous,	delightful
story.	Fortuitously,	or	so	it	seemed	at	first,	an	Egyptian	ship	landed	on	the
Phoenician	coast	near	the	temple	where	Pythagoras	was	living.	The	sailors	were
pleased	to	welcome	him	aboard,	thinking	they	could	sell	such	a	comely	young
man	at	a	good	price.	During	the	voyage,	they	changed	their	minds.	There	was
something	different	about	this	modest	youth	from	what	one	normally	expected
of	a	human	being.	The	sailors	reminded	one	another	how	he	had	appeared,
descending	the	sacred	Mount	Carmel,	how	he	had	said	nothing	except	to	ask,
“Are	you	bound	for	Egypt?”	and	then	had	come	aboard	and	sat	silently	and	out
of	their	way	for	two	nights	and	three	days	without	taking	food	or	drink,	or
sleeping—at	least	when	any	of	them	were	watching.	The	voyage	was,
furthermore,	going	exceptionally	well,	with	fair	weather	and	favorable	winds.



The	sailors	delivered	Pythagoras	safely	to	the	Egyptian	coast	and	helped	him	off
the	ship	(he	was	weak	from	fasting	and	lack	of	sleep),	then	built	an	altar	in	front
of	him	and	heaped	it	with	fruit.	When	they	left,	he	ravenously	consumed	the
fruit.	One	may	take	this	story	as	evidence	of	his	godlike	nature,	or	as	suggesting
that	he	was	a	canny	young	traveler,	giving	careful	attention	to	self-preservation.

Iamblichus’	sources	indicated	that	in	Egypt	Pythagoras	frequented	temples,
sat	at	the	feet	of	priests	and	prophets,	sought	out	men	celebrated	for	their
wisdom,	and	visited	“any	place	in	which	he	thought	something	more	excellent
might	be	found,”	“astronomizing	and	geometrizing.”	Isocrates,	an	older
contemporary	of	Plato	in	the	early	fourth	century	B.C.,	eagerly	latched	on	to	the
information	that	Pythagoras	spent	time	in	Egypt.	Isocrates	was	intent	on	showing
that	the	Greeks	owed	their	learning	to	the	Egyptians	and	had	added	very	little.	In
his	disparaging	words,	Pythagoras	“went	to	Egypt,	and	having	become	their
pupil	was	the	first	to	introduce	philosophy	in	general	to	Greece,	and	concerned
himself	more	conspicuously	than	anyone	else,	with	matters	to	do	with	sacrifices
and	temple	purifications,	thinking	that	even	if	this	would	gain	him	no	advantage
from	the	gods	it	would	at	least	bring	him	high	repute	among	men.	And	that	is
what	happened.”	As	in	the	tale	of	Pythagoras’	sagacious	handling	of	the
Egyptian	sailors,	here	is	a	hint	that	for	all	his	reputed	purity,	he	was	not	naive
but	perhaps	even	rather	opportunistic.

Egypt	at	the	time	when	Pythagoras	could	have	been	there	was	ruled	by	the
pharaoh	Amasis	II	(Ahmose	II),	later	an	acquaintance	of	Samos’	tyrant
Polykrates.	It	was	unusual	but	not	unprecedented	for	a	Greek	to	visit	Egypt.	In
the	seventh	century	B.C.,	the	pharaoh	Psamtek	I	had	hired	Greek	mercenaries,
and	in	Pythagoras’	day	there	were	Greeks	living	in	Naukratis	in	the	Nile	delta,
for	Amasis	was	eager	to	promote	trade	with	the	Greek	cities	and	even	made	a
donation	toward	a	rebuilding	project	at	Delphi.	However,	he	restricted	Greek
merchants	to	the	one	city	and	did	not	allow	them	to	move	around	the	country	as
much	as	Pythagoras	is	supposed	to	have	done.

Porphyry	reported	a	different	version	of	Pythagoras’	Egyptian	sojourn.	His
source	was	On	Illustrious	Virtuous	Men,	by	Antiphon.	By	this	account,
Pythagoras	set	off	with	a	letter	of	introduction	from	Polykrates	to	Amasis.	This
would	place	the	journey	too	late,	for	Polykrates’	reign	began	in	535,	shortly
before	Pythagoras	moved	to	Croton.	Nevertheless,	Porphyry’s	account	is
interesting:	Pythagoras	went	first	to	the	priests	of	Heliopolis,	who	sent	him	on	to
Memphis,	saying	the	priests	there	were	more	ancient.	These,	in	turn,	on	the	same
excuse,	sent	him	to	Diospolis	(ancient	Thebes),	a	journey	of	more	than	three
hundred	miles	to	the	south.	The	priests	of	Diospolis	had	nowhere	else	to	send



him,	but	thought	that	if	they	made	things	difficult	enough	he	would	go	away.
They	gave	him	“very	hard	precepts,	entirely	different	from	the	institutions	of	the
Greeks,”	which	he	doggedly	performed,	winning	their	admiration	to	the	extent
that	they	taught	him	their	secret	wisdom	and	permitted	him	to	sacrifice	to	their
gods,	something	not	normally	allowed	a	foreigner.	Pythagoras	would	later	adopt
the	practice	of	secretiveness	with	respect	to	his	own	teachings,	as	was	not
common	in	the	Greek	world.

If	Pythagoras	did	go	to	Egypt,	what	could	he	have	learned?	In	the	temple
complexes	there	were	“Houses	of	Life”	with	many	learned	men	copying
manuscripts,	large	libraries,	and	sometimes	schools.	The	ruling	classes	were
literate,	as	we	must	suppose	Pythagoras	was,	but	he	did	not	know	the	languages
of	Egypt.	If	the	priests	accepted	him,	as	Porphyry	believes	they	must	have,	then
Pythagoras,	though	older	than	the	schoolboys,	would	have	had	to	start	on	an
elementary	level	with	a	language,	alphabet,	and	numbers	that	were	foreign	to
him,	before	he	could	begin	to	understand	priestly	liturgy	and	wisdom.	He	would
have	studied	the	cursive	hieratic	script,	perhaps	copied	out	books	of	Egyptian
literature,	then	advanced	to	hieroglyphs.	He	would	have	learned	a	decimal
system	with	numbers	the	equivalent	of	1,	10,	100,	1,000,	and	10,000,	but	no
symbol	for	zero.	To	multiply,	an	Egyptian	added	a	number	to	itself	the	necessary
number	of	times.	To	divide,	he	subtracted	a	number	from	itself	until	the
remainder	was	too	small	to	continue.	Pi	was	unknown,	but	one	could	come	close
to	calculating	the	area	of	a	circle	by	measuring	the	diameter,	subtracting	1/9,	and
squaring	the	result.

Such	mathematical	knowledge	was	for	practical	use:	for	construction	or—
when	it	came	to	the	circle—for	measuring	such	things	as	the	capacity	of	a
granary—but	this	was	a	culture	whose	worldview	seamlessly	included	what	was
tangible	physical	fact	and	what	was	mythological	or	metaphorical,	drawing	no
boundaries	between	practical	and	esoteric	knowledge,	or	between	everyday
reality	and	the	holy.	The	Egyptians’	elaborate	preparations	for	another	world
after	death	had	a	practical	motive:	to	supply	what	one	needed	to	get	there	and
live	there.	Magic	was	a	high	category	of	knowledge,	as	were	religious	ritual,
myth,	and	medicine.	Pythagoras	would	have	studied	the	Egyptian	hierarchy	of
gods	and	goddesses	and	beliefs	about	the	afterlife,	but	not	a	doctrine	of
reincarnation.1	He	also	would	not	have	learned	vegetarianism,	for	the	upper
classes	ate	beef	and	other	meat	fairly	often.

The	Egyptians	had	long	excelled	in	surveying.	The	near	perfect	squareness
and	north–south	orientation	of	the	Great	Pyramid	of	Khufu	at	Giza	is	evidence
of	their	astounding	precision,	and	Pythagoras	could	not	have	missed	seeing	that



pyramid	if	he	traveled	as	Porphyry	thought	he	did.	It	dated	from	about	2500	B.C.,
two	thousand	years	before	him.	We	cannot	know	with	certainty	that	the
Egyptians	in	the	sixth	century	still	had	the	technical	genius	of	those	distant
predecessors,	but	surveying	for	land	boundaries,	city	plans,	and	buildings	was
routine,	and	the	older,	magnificent	structures	that	are	still	wonders	of	the	world
today	were	much	fresher	and	much	more	impressive	to	someone	who	had	not
encountered	human-made	objects	on	this	scale.

From	the	temple	roofs,	Pythagoras	might	have	assisted	with	observations	of
the	cycles	of	the	moon	and	the	movements	of	the	stars	and	learned	how	these
were	related	to	the	Egyptian	twelve-month	calendar	and	365-day	year.	Egyptians
thought	their	country	was	the	center	of	the	cosmos	and	that	there	were	definite
connections	between	the	stars	and	events	on	Earth.	For	example,	the	star	Sirius
(Sopdet),	invisible	for	several	months,	reappeared	in	mid-July	as	a	morning	star,
signaling	the	onset	of	the	yearly	inundation	of	the	Nile	and	the	beginning	of	the
new	year.

The	Great	Pyramid	of	Khufu	at	Giza	with	the	Sphinx	in	the	foreground

Different	temples	had	different	specialties.	If	Pythagoras	did	not	move	on
too	quickly	from	Heliopolis	(in	Porphyry’s	scenario)	he	might	have	learned	a
creation	theology	that	explained	the	diversity	of	nature	arising	from	a	single
source,	the	god	Atum,	meaning	“the	All.”	Atum	existed	in	a	state	of	unrealized



potential	not	far	different	from	the	“unlimited”	in	Anaximander’s	teaching	and
later	in	Pythagorean	thinking.	At	Memphis,	where,	as	Porphyry	told	it,
Pythagoras	spent	a	little	time	before	being	sent	on,	he	could	have	learned	a	more
remarkable	theology	of	divine	creativity	that	provided	an	agent	through	which
an	idea	in	the	mind	of	the	creator	became	a	physical	reality.	In	many	early
cultures,	a	spoken	or	written	word	was	understood	to	have	creative	power.	In
creation	as	viewed	in	Genesis,	God	spoke,	and	it	was	so.	The	theology	of	the
priests	at	Memphis	divided	that	creative	“word”	into	two	different	roles.	A	link
was	required,	a	divine	intermediary	between	an	idea	in	the	mind	of	the	creator
and	the	actual	physical	creation.	Memphis	theology	had	arrived	at	a	concept	that
would	later	be	expressed	in	the	opening	of	the	Christian	Gospel	of	John,	where
the	Logos—Jesus,	the	second	member	of	a	trinity—bridges	the	creative	gap
between	God	and	man:	“through	him	[not	“by	him”]	all	things	were	created,
without	him	nothing	was	created	that	has	been	created.”	Plato’s	“demiurge”
bridged	the	same	gap.	The	god	who	performed	that	role	in	the	theology	of
Memphis,	Ptah,	operated	in	similar	manner	on	the	human	level,	enabling	an	idea
in	a	human	mind	(a	craftsman	or	artist)	to	become	a	real-world	product.	This
role	or	force	was	“effectiveness”	or	“magic.”	Without	it	you	had	speech	or	an
idea	or	something	written	on	a	page.	With	it	you	had	creative	power.	Pythagoras
and	his	followers	would	later	assign	that	creative	role	to	numbers,	though,	by
some	interpretations,	Pythagoreans	would	understand	numbers	to	be	the	idea	in
the	mind	of	the	creator,	and	the	creation,	and	the	link	between	the	two.

At	Thebes,	where	Porphyry	thought	Pythagoras	finally	spent	a	long	period
and	was	accepted	by	the	priests	into	their	most	secret	mysteries,	Egyptian
theology	had	a	monotheism	close	to	that	expressed	in	the	Christian	concept	of
the	Trinity,	but	with	more	“members.”	The	god	Amun	(meaning	“Hidden”)	was
the	greatest	among	the	gods—“unknowable”	and	transcendent.	The	others	were
different	manifestations	of	him.

Porphyry	had	Pythagoras	returning	to	Samos	from	Thebes,	but	Iamblichus
wrote	an	exciting	addition	to	the	story:	Pythagoras	was	taken	captive	by
“soldiers	of	Cambyses”	and	brought	from	Egypt	to	Babylon.	If	Iamblicus	was
right,	Pythagoras	arrived	there	during	the	reign	of	the	Chaldean	dynasty,	which
began	in	625	B.C.,	in	the	century	before	Pythagoras’	birth,	and	lasted	until	539,
well	into	his	lifetime.	During	this	period,	Babylon	enjoyed	the	second	golden
age	in	its	long	history—an	age	scholars	call	neo-Babylonian.	However,
Iamblichus’	timing,	as	implied	by	the	words	“soldiers	of	Cambyses,”	is	a
problem.	Cambyses	I	was	a	Persian	prince	in	a	royal	line	ruling	in	the
southwestern	part	of	present-day	Iran.	He	was	the	father	of	Cyrus	the	Great,	to



whom	Babylon	would	later	fall,	and	whose	empire	would	far	exceed	hers.
Cambyses	reigned	from	about	600	to	559	B.C.	Pythagoras	was	probably	only
eleven	years	old	in	559.	There	were	frequent	clashes	between	the	Egyptians	and
the	Babylonians,	and	Babylonian	soldiers	surely	took	some	captives,	but	not
until	after	529	(when	Pythagoras	was	already	in	southern	Italy)	did	Cyrus	the
Great’s	son	Cambyses	II	conquer	Egypt.

Iamblichus	estimated	that	Pythagoras	lived	in	Babylon	for	about	twelve
years.	Any	adventurous	young	man	would	have	envied	him	this	opportunity,	for
Babylon	was	a	splendid,	exotic,	cosmopolitan	city	at	the	height	of	her	power	and
wealth,	far	older	than	Samos,	and	far	more	worldly	and	sophisticated	than	Egypt.
A	period	of	supreme	success	and	prosperity	a	thousand	years	earlier—the	era	of
the	1894–1595	B.C.	“Dynasty	of	Babylon”	and	especially	the	reign	of
Hammurabi—had	been	one	of	the	pinnacles	of	ancient	civilization.	In	the
millennium	that	had	passed	between	that	period	and	Pythagoras’	lifetime,
Mesopotamia	had	experienced	wave	after	wave	of	migration,	military	clashes,
and	dynastic	shifts,	and	one	city	after	another	had	grappled	for	its	moment	in	the
Mesopotamian	sun.	Now	it	was	again	Babylon’s	turn.	If	Iamblichus’	dates	were
near	correct,	Pythagoras’	visit	probably	caught	the	wake	of	the	reign	of
Nebuchadnezzar	II,	when	Babylon	was	ruled	by	lesser,	short-lived	kings	of	the
same	dynasty.	Nebuchadnezzar	had	died	in	562	B.C.,	when	Pythagoras	was	about
eight	years	old.

Pythagoras	would	have	arrived	in	Babylon	either	by	caravan	across	the	plain
or	by	boat	on	the	Euphrates.2	Either	way,	the	towering	seven-level	ziggurat	was
visible	long	before	the	city	came	into	view.	Though	young	in	comparison	with
the	Giza	pyramid	(and	no	match	for	it	in	height—the	ziggurat	was	about	300	feet
high,	the	pyramid	481	feet),	the	ziggurat	nevertheless	was	an	exceedingly
ancient	monument,	a	relic	of	Babylon’s	earlier	golden	age.	Nebuchadnezzar	had
made	sure	that	it	was	splendidly	restored	to	connect	his	own	reign	with	that
former	glory.	The	principal	approach	to	the	city	from	the	north	was	an	avenue
sixty-six	feet	wide,	built	of	giant	limestone	paving	slabs	covering	a	foundation
of	brick	and	asphalt.	On	either	hand,	sixty	lions—fashioned	of	red,	white,	and
yellow	tile	on	the	high	walls—stalked	the	men	and	women	on	the	road.	At	the
city’s	Ishtar	Gate,	bulls	and	dragons	took	over	from	the	lions.	This	entrance	was
one	of	eight	massive,	bronze-armored	portals	in	a	double-walled,	moated
fortification	system	that	surrounded	the	city.	Inside,	the	avenue	continued	and
crossed	the	Euphrates	on	a	bridge	with	supports	high	enough	and	far	enough
apart	to	allow	the	largest	ships	to	pass.	A	temple	complex	housed	the	jewel-
studded	shrine	of	Marduk,	god	of	the	city,	in	a	chamber	lined	with	gold.



Pythagoras	and	others	who	were	not	royalty	or	among	the	most	elite	of	the
priests	would	not	have	entered	this	chamber,	but	they	would	have	known	about
it.

Beyond	the	temple	precincts,	the	city	spread	on	both	sides	of	the	Euphrates
and	included	a	royal	palace	with	state	rooms,	private	quarters,	courtyards,	and	a
harem	for	the	queen	and	concubines	brought	from	all	parts	of	the	empire.	If	they
are	not	only	legendary	(the	archaeological	evidence	is	ambiguous	but	not
entirely	absent),	the	Hanging	Gardens	were	part	of	this	complex,	and	they,	like
the	ziggurat,	were	a	prominent	landmark	visible	from	a	distance	above	the
surrounding	buildings—a	terraced	hill	of	earth,	supported	by	massive	vaults
built	so	that	their	floors	were	waterproof	and	could	support	enough	soil	to	plant
large	trees,	watered	from	the	nearby	Euphrates	by	complicated	irrigation
machinery.	Similar	irrigation	wizardry	and	a	series	of	canals	watered	gardens
and	orchards	in	the	newer	part	of	the	city	and	carried	water	to	distant	suburbs.
The	practical	knowledge	of	mathematics	and	geometry	that	made	possible	these
buildings	and	the	surveying	for	the	irrigation	was	evidence	of	how	well	the
scribes	of	Babylon	understood	these	subjects—or,	at	least,	had	understood	them
many	centuries	before,	when	the	building	techniques	were	developed.	It	is	likely
that	the	theory	and	deeper	mathematical	understanding	underlying	the
techniques	had	been	forgotten	by	the	time	of	Pythagoras,	though	the	techniques
themselves	had	become	routine	and	were	still	in	use.

Because	people	who	came	to	Babylon	for	whatever	reason	often	chose	to
stay,	her	streets	and	passages	were	a	cacophony	of	languages.	There	were
Hurrians,	Cassites,	Hittites,	Elamites,	Jews,	Egyptians,	Aramaeans,	Assyrians,
Chaldeans,	and	all	mixes	thereof.	Centuries	of	captives	(including	the	Jews
brought	from	Judea	and	Israel,	who	were	there	during	Nebuchadnezzar’s	reign),
conquerors,	and	visitors	had	lived	in	the	city	long	enough	and	mixed	sufficiently
well	to	interbreed,	until	Babylon	had	become,	in	the	words	of	the	twentieth-
century	scholar	H.	W.	F.	Saggs,	“a	thoroughly	mongrel	city.”	Ancient	tablets
give	evidence	of	an	astounding	variety	of	jobs,	careers,	and	crafts,	and	a	rich
array	of	goods	that	arrived,	some	by	caravan	but	mainly	by	way	of	the	river.
Women	had	authority	over	slaves	or	servants	in	their	households,	but	probably
wore	veils	in	public.

Pythagoras,	exploring	these	streets	and	passageways	and	listening	to	all	the
languages,	would	have	seen	house	walls	that	glowed	in	bands	of	light	and	shade,
an	effect	ingeniously	produced	by	a	“saw-toothed”	treatment	that	made	the
surface	reflect	the	brilliant	desert	sunlight	in	this	variegated	manner.	He	would
have	stayed	in	private	houses	oriented	almost	entirely	toward	interior	courtyards,



their	entrances	guarded	by	a	porter	and	a	confusing,	indirect	entryway	to
discourage	unwanted	visitors	and	peeping	toms.	Whether	he	lived	in	a	house	like
that	or	in	the	temple	precincts—for	his	success	among	the	priests	and	scribes
should	not	have	been	any	less	here	than	in	Egypt—his	diet	was	probably	mostly
vegetarian,	not	by	choice	but	because,	in	a	city	fed	from	irrigated	fields
surrounded	by	desert	wastelands,	meat	was	a	luxury	item.

What	could	Pythagoras	have	learned	in	Babylon?	He	was	familiar	with	her
art	and	design,	for	Hera’s	temple	on	Samos	included	many	examples.	He	would
have	sought	out	the	scribes.	Writing	and	calculating	were	their	primary
activities.	Some	were	part	of	governmental	and	temple	communities,	some
worked	for	the	military,	others	served	private	citizens	or	taught.	Many
freelanced,	offering	their	services	in	the	marketplace	for	people	needing	letters
written,	legal	documents	drawn	up,	calculations	made.	Besides	the	scribes,	only
the	rare	Babylonian	could	read,	write,	or	calculate.	At	the	top	of	the	profession
were	the	highest-ranking	priests	at	the	temple	of	Marduk,	who	had	to	be	able	to
read	the	texts	for	the	rituals	they	used.	These	texts	were	often	written	in
ideograms,	making	them	inaccessible	to	those	not	trained	in	this	particular	type
of	text,	and	they	often	included	a	warning	that	only	the	initiated	should	even	see
them.	Such	secretiveness	might	have	seemed	prudent	to	Pythagoras,	who
instituted	it	later	in	Croton.

Much	of	the	information	that	modern	scholars	have	about	knowledge	in
ancient	Mesopotamia	comes	not	from	this	neo-Babylonian	period	but	from	the
first	great	era	of	Babylon	a	millennium	earlier	(1894–1595	B.C.).	Tablets	that
were	school	texts	then	show	that	teachers	and	scholars	knew	the	value	of	pi,
could	calculate	square	and	cube	roots,	and	understood	what	is	now	known	as	the
“Pythagorean”	theorem.	The	system	of	mathematics	they	used	was	already	fully
developed	and	being	taught	routinely	to	scribal	students.	But	was	the
“Pythagorean	theorem,”	which	had	made	it	into	the	textbooks	in	the	second
millennium	B.C.,	still	known	in	Babylon	at	the	time	of	Pythagoras?	Experts	on
ancient	Mesopotamia	think	not;	but,	if	it	was,	Pythagoras	of	course	might	have
learned	it	from	the	scribes.	If	he	carried	away	with	him	knowledge	of	their
sexagesimal	number	system—based	on	sixes	rather	than	on	tens—nothing	of
that	showed	up	in	later	stories	about	him	or	his	followers.

Pythagoras	would	have	encountered	a	sophisticated	astronomy	if	he	sought
out	Babylonians	who	studied	the	stars.	“Early	Greek	science	and	natural
philosophy”	may	have	begun	with	Thales’	observation	of	the	eclipse	on	May	28,
585	B.C.	but	Mesopotamian	scholars	had	long	known	how	to	predict	eclipses.
Again,	evidence	is	lacking	whether	the	learning	that	had	been	so	impressive,	and



that	is	so	well	documented	on	tablets	originating	a	thousand	years	earlier,	was
still	in	the	grasp	of	Mesopotamian	scribes	and	astronomers	at	the	time	of
Nebuchadnezzar.	The	fact	that	Babylonians	set	up	a	sacred	kettledrum	during	an
eclipse	and	beat	on	it	to	drive	off	the	demons	that	were	obscuring	the	moon	is	no
indication	that	the	earlier	sophistication	had	been	lost.	It	is	difficult	to	imagine
even	a	modern	society	giving	up	such	spectacle	and	fun	just	because	of	a
scientific	explanation!	Later,	in	the	Persian	and	Hellenistic	eras,	a	highly
mathematical	Mesopotamian	astronomy	used	observational	data	that	had	been
collected	for	centuries	in	the	temples.

Pythagoras	did	not	learn	the	doctrine	of	reincarnation	in	Babylon.	A
Babylonian—barring	unusual	circumstances	that	left	him	flitting	around	as	a
baleful	ghost—died,	went	to	a	dismal	netherworld,	and	stayed	there.

THOUGH	IAMBLICHUS	CANNOT	have	been	correct	that	Pythagoras	spent	about
thirty-four	years	in	Egypt	and	Babylon	(no	acceptable	chronology	allows	that
much	time),	he	was	probably	right	that	when	Pythagoras	returned	to	Samos	only
a	few	inhabitants	of	his	home	island	remembered	him.	Nevertheless,	wrote
Iamblichus,	he	made	an	excellent	impression	with	the	learning	he	had
accumulated	and	the	tales	he	could	tell,	and	was	publicly	requested	to	share	this
knowledge	with	his	countrymen.	That	seemed	an	excellent	idea	to	many
Samians,	until	they	realized	what	mental	effort	it	required.	Pythagoras’
audiences	dwindled,	those	who	stayed	were	lazy,	and	soon	no	one	was	listening
to	him.	Iamblichus	believed	that	he	did	not	take	umbrage.	He	was	still
determined	to	give	his	fellow	citizens	a	“taste	of	the	sweetness	of	the
mathematical	disciplines”	and	concerned	that	his	skills	and	learning	would
desert	him	as	he	aged.	He	adopted	a	fresh	strategy:	Rather	than	teach	a
multitude,	he	chose	one	promising	disciple.

Iamblichus	described	Pythagoras’	choice	as	a	poverty-stricken	but	talented
young	athlete,	whom	Pythagoras	discovered	playing	ball	in	the	gymnasium
“with	great	aptness	and	facility.”	They	struck	an	agreement.	Pythagoras	would
provide	him	with	the	necessities	of	life	and	the	opportunity	to	continue	his
athletics,	on	condition	that	the	young	man	would,	in	easy	doses	(at	least	by
Pythagoras’	standards)	allow	Pythagoras	to	educate	him.	At	first	the	youth
seemed	motivated	mostly	by	rewards	of	three	eboli	for	learning	figures	on	the
abacus.	As	time	passed,	Pythagoras	observed	that	his	interest	became	keener,	so
much	so	that	Pythagoras	suspected	it	would	continue	even	without	the	eboli—
even	if	he	had	to	“suffer	the	extremity	of	want.”	As	a	test,	Pythagoras	pretended
to	have	had	a	catastrophic	change	of	fortune,	requiring	the	association	to	end.	As



Pythagoras	had	hoped,	the	youth	declared	that	he	could	learn	without	rewards
and	would	find	a	way	to	provide	for	both	himself	and	Pythagoras.	Iamblichus
wrote	that	this	young	man,	to	honor	his	mentor,	took	the	name	“Pythagoras,	son
of	Eratocles”	and,	alone	among	Pythagoras’	acquaintances	on	Samos,	eventually
moved	with	him	to	southern	Italy.	Iamblichus	did	not	indicate	where	he	got	this
information	except	to	mention	that	“there	are	said	to	be”	three	books	by
Pythagoras,	son	of	Eratocles,	titled	On	Athletics,	in	which	he	recommended
eating	meat	instead	of	dry	figs.	If	he	took	this	recommendation	from	his	teacher,
then	the	advice	ran	counter	to	information	from	other	sources	that	Pythagoras
was	a	vegetarian	and	required	the	same	of	his	students	and	followers.

A	story	about	another	pupil	also	conflicts	with	Pythagoras’	reputation	as	a
strict	vegetarian.	Eurymenes	was	also	an	athlete,	but	he	was	small.	It	was	the
custom	to	eat	only	moist	cheese,	dry	figs,	and	wheat	bread	while	in	training	for
the	Olympic	games.	Pythagoras	instead	advised	Eurymenes	to	eat	meat.	He	also
taught	him	not	to	go	into	the	games	for	the	sake	of	victory	but	for	the	exercise	of
training	and	the	benefit	to	his	body.	Diet	and	Pythagorean	sports	psychology
worked	wonders.	Eurymenes,	in	Porphyry’s	words,	“conquered	at	Olympia
through	his	surpassing	knowledge	of	Pythagoras’	wisdom.”*

According	to	Porphyry,	these	two	athletes	were	not	Pythagoras’	only	pupils
during	this	period.	Porphyry	had	read	of	another	in	On	the	Incredible	Things
Beyond	Thule,	the	book	he	used	for	information	about	Pythagoras’	father,
insisting	that	its	author	had	“treated	Pythagoras’	affairs	so	carefully	that	I	think
his	account	should	not	be	omitted.”	Porphyry	did	not	say	it	should	necessarily	be
believed.	On	a	trading	journey,	Pythagoras’	father,	Mnesarchus,	discovered	an
infant	under	a	poplar	tree,	lying	on	its	back,	looking	unblinkingly	at	the	sun	and
sipping	dew	falling	from	the	tree	through	a	reed	pipe	in	its	mouth.	This	struck
Mnesarchus	as	divine	activity,	and	he	arranged	for	the	child	to	be	fostered	by	a
friend	and	native	of	that	country,	later	paid	for	his	education,	named	him
Astraeus,	and	reared	him	with	his	own	sons.	Pythagoras	took	this	younger
adopted	brother	as	his	pupil.	Porphyry	also	mentioned	a	fourth	pupil,	Zalmoxis
of	Thrace,	who	“some	said”	also	took	the	name	Thales.	Though	not	an
Olympian,	he	must	have	had	an	impressive	build,	for	barbarians	mistook	him	for
Hercules	and	worshipped	him.

On	the	Incredible	Things	Beyond	Thule	listed	the	qualities	Pythagoras
looked	for	in	those	who	came	to	study	with	him.	Its	author	had	learned	(his
source	is	not	known)	that	Pythagoras	did	not	agree	to	teach	everyone	who	came,
nor	were	his	choices	based	only	on	intelligence	or	kinship.	He	observed	a
candidate’s	facial	expressions,	body	language,	and	disposition.	He	looked	for



modesty,	ability	to	keep	silent	being	more	important	than	readiness	to	speak.	He
observed	whether	the	prospective	pupil	was	moved	by	any	immoderate	desire	or
passion,	how	anger	affected	him,	whether	he	was	contentious	or	ambitious,
inclined	more	to	friendship	or	to	discord.	After	a	candidate	passed	those	tests,
Pythagoras	took	note	of	his	ability	to	learn,	memorize,	and	follow	rapidly	what
was	said.	Of	primary	importance	was	how	strongly	a	youth	was	motivated	by
temperance	and	love.	Natural	gentleness	and	“culture”	were	essential;	ferocity,
impudence,	shamelessness,	sloth,	and	licentiousness	were	distinct	negatives.
Pythagoras	expelled	pupils	“as	strangers	and	barbarians”	if	they	failed	to	live	up
to	his	expectations.

IN	535	B.C.,	when	the	tyranny	that	had	wrenched	control	from	the	Geomoroi	had
ruled	for	several	decades,	the	most	infamous	of	the	tyrants,	Polykrates,	came	to
power	in	Samos.	At	first	he	ruled	with	two	brothers,	but	he	soon	disposed	of
them.	Samos	continued	to	grow	in	power	and	wealth,	but	not	in	popularity
among	her	neighbors,	for	Polykrates	became	a	much	hated	and	feared	player	in
the	politics	of	the	eastern	Mediterranean.	Depending	on	who	described	it,	his
fleet	was	either	one	of	the	most	superb	navies	of	the	ancient	world	or	a
supremely	successful	band	of	pirates.	Polykrates	traveled	in	person	to	other
countries	to	seal	new	agreements	and	forge	connections	with	rulers	like	the
pharaoh	Amasis,	but	such	agreements	had	little	meaning,	for	he	made	and
shattered	alliances	with	ruthless	abandon.

Under	Polykrates,	Samos	reached	the	pinnacle	of	her	fortunes,	not	only	in
terms	of	economic	and	rather	ugly	political	prominence,	but	also	in	art,
literature,	and	engineering	feats.	For	a	time	it	was	the	most	powerful	of	all	the
Greek	city-states.	Pythagoras	lived	on	Samos	for	only	part	of	this	period,	but
long	enough	to	experience	the	excitement	and	intellectual	stimulation	that
characterized	Polykrates’	otherwise	deplorable	reign.	Polykrates	was	the	patron
of	the	poet	Anacreon	and	engaged	the	engineer	Eupalinos	to	construct	a	new
harbor	and	a	water	tunnel	that	was	one	of	the	most	astounding	engineering
achievements	of	the	ancient	world.	It	brought	water	from	alpine	springs	through
the	mountain	above	the	city	of	Samos,	ending	any	shortage	of	water	there	no
matter	how	dry	the	summer.*	The	fleet	grew	to	a	hundred	ships,	each	manned	by
a	thousand	archers.	In	spite	of	Polykrates’	widespread	unpopularity	and	long
absences,	no	one	unseated	him	until	finally,	in	522—after	Pythagoras	had	left
Samos—a	Persian	governor	of	Sardis	trumped	Polykrates’	treachery.	He	invited
him	for	a	state	visit	and,	when	he	arrived,	had	him	crucified.

It	is	reasonable	to	believe,	with	Iamblichus,	that	Pythagoras	did	not	remain



on	Samos	without	interruption	during	the	years	before	he	finally	moved	to
Croton	in	Italy,	but	visited	oracles,	spent	time	at	Delphi,	and	went	to	Crete	and
Sparta	to	learn	their	laws,	which	were	different	from	Samos’.	Iamblichus	first
mentioned	Pythagoras’	taking	an	interest	in	public	affairs	at	this	time.	Porphyry
also	believed	that	Pythagoras	left	Samos	briefly	to	undergo	an	initiation
ceremony	on	Crete:	The	supplicant	seeking	initiation	to	“the	priests	of	Morgot,
one	of	the	Idaean	Dactyls,”	was	purified	with	a	meteorite	(“the	meteoric
thunderstone”),	lying	at	dawn	face	down	on	the	seaside	and	at	night	beside	a
river,	crowned	with	a	wreath	of	black	lamb’s	wool.	Then,	wrapped	in	black
wool,	he	descended	into	the	Idaean	cave	and	remained	for	twenty-seven	days.
After	that,	he	made	a	sacrifice	to	Zeus	and	was	allowed	to	see	the	couch	the
priests	made	up	every	year	for	Zeus.	Pythagoras,	having	gone	through	the
initiation,	inscribed	an	epigram	on	the	tomb	of	Zeus,	which	began	“Zan	lies	dead
here,	whom	men	call	Zeus”—implying,	it	would	seem,	that	he	knew	or	had
known	this	god	on	a	more	personal	basis	than	other	men	did.

As	time	passed,	Pythagoras’	renown	spread,	learned	men	came	from	abroad
to	confer	with	him,	potential	students	flocked	to	him.	He	also	served	Samos	in
an	administrative	capacity,	as	was	expected	of	important	scholars	in	this	era	in
the	Hellenic	world.	However,	he	often	retreated	to	a	cavern	outside	the	city	for
discussions	with	a	few	close	associates.	Samians	today	identify	a	cave	on	the
steep,	wooded	slopes	of	Mount	Kerketeas,	the	island’s	highest	mountain,	as
Pythagoras’	cave.	Nevertheless,	as	public	responsibilities	increased,	it	became
impossible	for	Pythagoras	to	continue	his	studies.	Furthermore,	Porphyry
observed,	he	saw	“that	Polykrates’	government	was	becoming	so	violent	that
soon	a	free	man	would	become	a	victim	of	his	tyranny,”	and	“that	life	in	such	a
state	was	unsuitable	for	a	philosopher.”	Involvement	at	a	court	like	Polykrates’
was	dangerous	for	a	man	who	spoke	honestly.	Also	motivated	by	a	failure	of	the
Samians	in	all	things	relating	to	education,	Pythagoras	departed	for	southern
Italy.	He	had	heard,	said	Iamblichus,	that	in	Italy	“men	well	disposed	towards
learning	were	to	be	found	in	the	greatest	abundance.”



CHAPTER	3

“Among	them	was	a	man	of
immense	knowledge”

530–500	B.C.

AT	THE	BEGINNING	OF	THE	seventh	decade	of	the	sixth	century	B.C.,	a	vessel	with
Pythagoras	on	board	sailed	across	the	waters	west	of	Tarentum	toward	the	toe	of
the	Italian	boot	and	the	port	city	of	Croton.	The	date	is	the	best	established	in
Pythagoras’	life.	One	of	the	most	reliable	of	the	earliest	sources,	Aristoxenus	of
Tarentum,	gave	it	as	532/531	B.C.*	Just	short	of	a	promontory	where	Croton’s
men	and	women	worshipped	at	their	own	sanctuary	of	the	goddess	Hera,	the	ship
came	into	harbor.	The	passengers	disembarked	at	docks	bustling	with	other
voyagers,	slaves,	sailors,	and	craftsmen	and	laborers	from	the	shipyards,	for
Croton	was	a	major	port	and	shipbuilding	center	in	this	region	of	the
Mediterranean.	Goods	traded	or	transferred	there	came	from	up	and	down	the
coasts	of	the	Italian	peninsula,	not	only	from	the	Greek	cities	but	also	from	the
Latin	communities	farther	north	and	from	numerous	other	regions	of	the
Mediterranean.

There	have	been	few	archaeological	excavations	within	the	city	of	Croton
proper.	Modern	Crotone	covers	the	ancient	Croton	of	Pythagoras,	and	frustrated
archaeologists	have	to	content	themselves	with	sporadic	work	during	the
excavation	of	foundations	for	new	buildings.	Nevertheless,	enough	is	known	to
allow	for	an	idea	of	the	arrangement	of	the	city	as	Pythagoras	found	it.1	Behind
the	harbor	the	ground	rose	steeply	to	a	hill	where	Achaean	settlers	had	first	built
their	homes	two	centuries	before	his	arrival.	This	hill	had	later	become	an
acropolis	until	Crotonians	began	lavishing	more	attention	on	the	temple	of	Hera
on	the	promontory.	Sixth-century	B.C.	Croton	apparently	included	three	large
blocks	of	houses	oriented	perpendicular	to	the	coastline	with	a	divergence	of	30
degrees	between	them,	an	impressively	geometrical	layout	but	not	unusual	in	its
time,	as	evidenced	by	the	Geomoroi.	Pythagoras	walked	in	narrow	streets
precisely	aligned	and	crossing	at	right	angles	with	narrower	lanes	isolating
individual	houses.	Crotonians	had	constructed	these	buildings	of	rough	blocks	of
stone,	sometimes	unbaked	bricks,	roofed	with	tile,	with	large	pieces	of	pottery
and	tiles	protecting	the	wall	footings.	They	lived	in	rooms	clustered	around



courtyards,	with	almost	no	windows	facing	the	streets	and	lanes.	A	man	who	had
also	experienced	Babylon	would	have	drawn	the	impression	that	the	people	of
Croton	were	more	trusting	and	friendly	than	those	who	lived	in	similar	houses
there,	for	entryways	in	Croton	opened	straight	into	the	courtyard.

Pythagoras	may	not	have	been	a	complete	stranger	here,	for	Croton’s	harbor
and	shipyards	were	on	the	coastal	sea	route	from	Greece	to	the	Strait	of	Messina,
Sicily,	and	the	Tyrrhenian	Sea,	and	there	were	stories	connecting	his	merchant
seafarer	father	with	the	Tyrrhenian	coast.	The	climate	in	Croton	was	magnificent
and	the	region	famous	for	being	particularly	healthful.	The	sea	was	not	the
opaque	cobalt	of	Pythagoras’	native	waters,	but	a	transparent,	cheerful	blue,	and
the	coastline	seemed	infinitely	long,	for	every	rise	in	the	terrain	revealed	curving
bays	and	coves	and	headlands	as	far	as	the	eye	could	see.	Forests	clothed	the	low
hills	and	some	of	the	headlands	and	the	shores	of	coves	near	the	city,	and	grew
thickly	in	the	mountains	on	the	northern	and	western	horizons.	Trees	were	one	of
Croton’s	most	valuable	economic	resources,	as	they	were	for	Samos,	providing
timber	for	the	shipyards.

Pythagoras	surely	knew	that	his	new	city	had	produced	at	least	one	amazing
athlete	and	a	fine	medical	man.	Croton’s	Olympic	successes	made	her	the	envy
of	the	Greek	world,	and	no	young	Greek,	no	matter	how	sequestered	in
intellectual	pursuits,	could	have	escaped	knowing	about	this	athletic
preeminence.	Every	four	years,	the	city’s	athletes	voyaged	east	to	Olympia	in
mainland	Greece	to	compete,	and	from	about	two	decades	before	Pythagoras’
birth	had	enjoyed	a	continuous	spate	of	triumphs.	Milo	of	Croton	won	the
wrestling	competitions	in	six	Olympic	games,	covering	a	span	of	at	least	twenty-
four	years—a	long	success	streak	for	any	athlete,	ancient	or	modern—and	at	six
Pythian	Games,	a	similar	competition	at	Delphi.*	Everyone	had	heard	how	he
had	hoisted	an	ox	onto	his	shoulders	and	carried	it	through	the	stadium	at
Olympia.	In	the	field	of	medicine,	Democedes	of	Croton	had	practiced	in	Athens
and	become	physician	to	Samos’	tyrant	Polykrates.	Such	was	Democedes’
reputation	and	success	that	he	would	later	be	employed	by	the	Persian	Darius	the
Great.	However,	if	Pythagoras	had	indeed	heard—as	Iamblichus	reported—that
in	Croton	men	were	“disposed	to	learning,”	that	must	have	meant	they	were
“ready	to	learn,”	for	Croton	was	not	yet	renowned	for	scholarship	or	thought.

Croton’s	most	important	religious	site,	Hera	Lacinia,	was	situated	on	a
promontory	at	the	end	of	a	peninsula	that	jutted	out	into	the	sea	near	the	town.
When	Pythagoras	first	arrived,	major	construction	at	the	temple	had	only	barely
begun,	if	it	had	begun	at	all,	but	soon	the	buildings	at	Croton’s	temple	of	Hera
would	rival	Samos’	temple	to	the	same	goddess.	The	treasures	would	include
one	of	the	most	beautiful	items	still	surviving	anywhere	from	the	ancient	world,



one	of	the	most	beautiful	items	still	surviving	anywhere	from	the	ancient	world,
a	diadem	of	exquisitely	worked	golden	flowers,	now	in	a	glass	case	in	Croton’s
museum.	Pythagoras	may	have	seen	it	wreathing	the	head	of	the	goddess’	statue.
Crotonian	donors	to	the	temple	were	wealthy,	cosmopolitan	citizens	who
venerated	her,	the	mother	of	Zeus,	as	the	protector	of	women	and	all	aspects	of
female	life,	and	as	Mother	Nature,	who	looked	after	animals	and	sea	travelers.

Crotonians	ruled	their	city	in	a	manner	that	must	have	seemed	blessedly	old-
fashioned	to	a	man	accustomed	to	living	under	Polykrates.	The	government	was
an	oligarchy,	as	Samos’	had	been	before	the	tyranny.	They	called	themselves	the
Thousand,	and	all	of	them	claimed	descent	from	colonists	who	had	come	two
centuries	before	Pythagoras	from	Achaea,	on	the	Greek	mainland.	The
population	there	had	outgrown	the	arable	land	in	narrow	mountain	valleys	and,
led	by	a	man	named	Myskellos,	had	taken	ship	to	the	west	to	try	their	luck
around	the	gulf	between	the	toe	and	the	heel	of	the	Italian	boot.2	They	were	not
“colonists”	in	the	sense	of	remaining	subservient	and	connected	to	a	mother
country.	What	was	true	for	many	Greek	cities—though	no	definition	fit	all—was
true	for	Croton	and	her	neighbors:	“hiving	off,”	as	happens	with	bees,	was	a
better	descriptive	word	than	“colonization.”	Greeks	of	the	independent	maritime
cities	of	southern	Italy	and	Sicily	had	done	well	to	leave	their	tight	mainland
valleys	and	were	likely,	in	Pythagoras’	time,	to	be	as	rich	and	cosmopolitan	as
those	who	lived	in	Athens.	Archaeological	finds	show	that	Myskellos’	settlers
were	not	the	first	people	to	live	at	Croton,	but	had	pushed	the	earlier	inhabitants
into	the	hinterlands	and	mountains.

Hera’s	golden	diadem,	dating	from	the	sixth	or	fifth	century	B.C.,	from	the	temple	of	Hera	Lacinia	at
Croton



Relations	among	the	cities	around	the	instep	of	the	boot	were	often
antagonistic,	but	Croton	was	apparently	not	walled	or	fortified.	Perhaps	the
considerable	distances	between	the	cities	made	that	unnecessary.	Nevertheless,
Crotonians	visited	the	other	communities.	They	might	have	hesitated	to	go	to
Sybaris,	Croton’s	chief	rival	and	enemy	during	Pythagoras’	time,	basking	in
“sybaritic”	languor	on	a	broad,	fertile	coastal	plain	about	seventy	miles	to	the
north.	However,	stories	placed	Pythagoras	on	several	occasions	in	Metapontum,
another	seventy	miles	north	of	Sybaris.	Both	Sybaris	and	Metapontum	had	been,
like	Croton,	Achaean	settlements,	while	Spartans	had	settled	Tarentum,	about
thirty	miles	beyond	Metapontum	following	the	coastline,	or	140	miles	across	the
water	from	Croton.	The	people	who	lived	in	these	cities	may	have	clung	to	some
identity	as	Achaean	or	Spartan,	but	the	wider	Greek	world	lumped	them	together
as	Italiotai,	while	neighbors	to	the	northwest,	in	the	Latin	and	Etruscan	regions,
called	them	Graeci.	To	the	Greeks	the	region	was	Megale	Hellas;	to	the	Latins,
Magna	Graecia.	In	the	end	the	Latin	name	would	stick,	because	one	of	those
Latin	neighbors,	about	350	miles	northwest	on	the	western	side	of	the	peninsula,
was	Rome,	destined	later	to	dominate	the	entire	region	and	much	of	the	western
world	and	near	east.

Those	who	lived	in	southern	Italy	at	the	time	of	Pythagoras	had	no
premonition	that	some	unusually	ambitious	construction	projects	in	Rome—
transforming	a	small,	centuries-old	community	into	a	city	designed	on	Etruscan
lines,	outgrowing	one	hilltop	after	another	and	expanding	down	the	slopes	into
marshier	territory,	draining	the	swamps	in	the	valley	and	paving	it	to	make	a
forum—were	only	the	first	manifestations	of	a	proclivity	for	building	and
conquering	and	expanding	that	would	eventually	make	Magna	Graecia	seem	a
near	suburb.	Greek	historians	took	no	notice	of	Rome	until	she	was	in	the
process	of	completing	her	conquest	of	the	Italian	peninsula,	250	years	after
Pythagoras.	Rome,	for	her	part,	was	too	busy	with	city	planning,	building,	and
wars	during	Pythagoras’	lifetime	to	take	much	notice	of	what	was	happening	in
Magna	Graecia.	However,	as	Rome	emerged	as	a	world	power,	she	would	create
for	herself	a	tradition	and	history	that	traced	her	ancient	ancestry	to	Greece’s
enemies	at	Troy,	the	Trojans,	and	made	Pythagoras	the	teacher	of	one	of	her
early	kings,	Numa.	Pythagoras	surely	did	not	teach	Numa,	who	died	well	before
his	birth,	but	well-educated	Romans	could	not	bring	themselves	to	believe	that
their	ancestors	in	Pythagoras’	time	knew	nothing	about	this	great	sage.	However,
though	Croton	and	her	neighbors	were	trading	actively	and	as	equals,	probably
even	superiors,	with	Rome	and	other	Latin	and	Etruscan	centers,	Croton’s	more
important	friends	and	foes	were	closer	to	home	on	the	southern	coastline	and	in



the	wider	Aegean	and	Mediterranean	seafaring	world	to	the	east,	south,	and
west.	As	the	crow	flies,	and	even	by	the	more	circuitous	but	safer	coastal	sea
route,	Croton	was	nearer	to	the	Greek	mainland	than	to	Rome.*

PYTHAGORAS	WAS	ABOUT	forty	years	old	when	he	settled	in	Croton,	where	he
would	live	for	about	thirty	years.	He	rapidly	gained	respect	and	soon	was
gathering	a	loyal	group	of	associates	into	a	society	that	bore	his	name	and	treated
him	with	reverence.	“He	said	it	himself”	became	a	proverb	among	them—the
last	word	on	any	subject.	Those	who	joined	him	included	ordinary	citizens,
noblemen,	and	women.

Iamblichus	and	Porphyry	based	their	descriptions	of	Pythagoras’	approach
to	the	people	of	Croton	on	the	writings	of	a	pupil	of	Aristotle	named
Dicaearchus,	one	of	the	earliest	sources	available	to	any	Pythagoras	scholar.
Originally	from	Messina	in	Sicily,	a	short	voyage	from	Croton,	Dicaearchus	was
at	the	height	of	his	career	in	320	B.C.,	about	180	years	after	Pythagoras	died.
When	Iamblichus	added	details—and	he	included	more	than	Porphyry	or
Diogenes	Laertius—he	gave	no	indication	where	he	got	them.	The	impression	is
that	he	could	safely	assume	his	readers	knew—or	thought	they	knew—a	great



deal	about	Pythagoras.	The	name	was	the	equivalent	of	modern	figures	who	can
be	mentioned	in	the	news	or	a	sitcom,	even	in	caricature,	with	no	need	to
explain.

There	was	a	possible	lost	source	of	information	about	Pythagoras’	years	in
Croton	that	would	add	credibility	to	the	details	of	the	tradition,	if	one	could	be
certain	it	existed.	The	most	skeptical	scholars	disdain	it,	while	others	point	out
that	it	is	improbable	that	it	did	not	exist.	Porphyry	thought	it	did.	Referring	to	a
time	after	Pythagoras	died	and	many	of	his	associates	had	been	killed,	he	wrote:

The	Pythagoreans	now	avoided	human	society,	being	lonely,
saddened	and	dispersed.	Fearing	nevertheless	that	among	men	the
name	of	philosophy	would	be	entirely	extinguished	.	.	.	each	man
made	his	own	collection	of	written	authorities	and	his	own
memories,	leaving	them	wherever	he	happened	to	die,	charging
their	wives,	sons	and	daughters	to	preserve	them	within	their
families.	This	mandate	of	transmission	within	each	family	was
obeyed	for	a	long	time.3

Such	journals,	as	Porphyry	implied,	possibly	gave	the	semi-historical	tradition	a
better	footing	in	fact	than	it	would	otherwise	have	had	and	were	responsible	for
its	being	strong	in	details	many	of	which	are	not	the	sort	identifiable	as	the	usual
stuff	of	pure	legend.	Weighing	against	their	existence	is	the	fact	that	some
pseudo-Pythagorean	books	later	claimed	to	be	such	journals,	and	these	forgeries
may	have	been	responsible	for	Porphyry’s,	and	others’,	faith	in	the	journals’
reality.	On	the	other	hand,	the	existence	of	fictionalized	journals	does	not
necessarily	mean	there	were	no	authentic	ones,	only	that	there	was	a	strong
rumor	there	had	been,	and	that	the	claim	to	be	a	Pythagorean	“memory	book”
could	make	a	book	a	sure	sell.

In	Iamblichus’	account,	probably	taken	from	Dicaearchus,	Pythagoras	began
his	approach	to	the	Crotonians	by	conversing	with	some	of	the	youth	of	the	city
whom	he	met	in	the	gymnasium.	There	could	hardly	have	been	a	surer	way	to
endear	himself	to	their	elders	than	by	advising	young	people	to	honor	their
parents,	practice	temperance,	and	cultivate	a	love	of	learning,	but	Pythagoras
must	have	had	amazing	charisma,	for	such	teaching	seems	unlikely	to	have
aroused	enthusiasm	among	the	young.

Hearing	of	him	from	their	sons,	members	of	the	Thousand	invited
Pythagoras	into	their	assembly	to	share	any	thoughts	that	would	be	advantageous
to	Crotonians	in	general.	Such	an	invitation	was	not	unusual	in	a	Greek	city,



especially	when	a	man’s	pedigree	in	his	native	country	was	as	unimpeachable	as
that	of	any	of	the	local	worthies.	The	Apostle	Paul,	soon	after	his	arrival	in
Athens,	was	similarly	invited	to	speak	before	the	Areopagus,	where	Athenians
and	foreigners	“spent	their	time	talking	about	and	listening	to	the	latest	ideas.”4
In	a	cosmopolitan	city	like	Croton,	high-ranking	citizens	were	eager	to	meet	a
man	recently	arrived	from	an	even	more	cosmopolitan	area	abroad.

Pythagoras	complied	with	the	request.	Some	of	his	advice	(as	reported	by
Iamblichus)	was	predictable,	some	unusual:	Build	a	temple	to	the	Muses	to
celebrate	symphony,	harmony,	rhythm,	and	all	things	conducive	to	concord,	he
proposed.	Symphony,	harmony,	and	concord	were	going	to	be	central	to
Pythagorean	doctrine,	and	also	to	the	neo-Pythagoreanism	of	Iamblichus’	era.
Consider	yourselves	the	equals	of	those	you	govern,	not	their	superiors,
Pythagoras	advised	the	rulers.	Establish	justice,	with	members	of	the
government	taking	no	offense	when	someone	contradicts	them.	End
procrastination.	At	home,	make	a	deliberate	effort	to	win	the	love	of	your
children,	for	while	other	compacts	are	engraved	on	tablets	and	pillars,	the	marital
compact	is	made	incarnate	in	children.	Never	separate	parents	from	their
children—the	greatest	of	evils.	Avoid	sexual	relations	with	any	other	than	a
marital	partner.	If	you	seek	an	honor,	seek	it	as	a	racer	does,	not	by	trying	to
injure	competitors	but	merely	by	trying	to	achieve	the	victory	for	yourself.	If	you
seek	glory,	strive	to	become	what	you	wish	to	seem	to	be.

The	simplicity	and	charm	of	this	list—and	its	lack	of	pomposity—lend	it	an
air	of	authenticity.	These	teachings	may	merely	have	been	Iamblichus’	late-
Roman	ideas	put	in	Pythagoras’	mouth,	but	it	was	the	sort	of	advice	that	would
have	been	remembered	in	an	oral	history	or	memory	book	and	would	have
appeared,	either	from	earlier	Pythagorean	sources	or	newly	minted,	in	the
teachings	of	the	various	groups	that	considered	themselves	Pythagorean	in	the
centuries	separating	Pythagoras	from	Iamblichus.	Iamblichus’	account	goes	on
to	say	that	the	elders	were	impressed.	They	built	the	temple	and	many	sent	their
concubines	packing.	They	asked	Pythagoras	to	address	the	young	men	in	a
formal	setting,	and	also	to	address	the	women	of	the	city,	whose	inclusion	was	a
strong	theme	in	the	Pythagorean	tradition.

In	Pythagoras’	address	to	the	young	men,	said	Iamblichus,	he	repeated	what
he	had	taught	those	he	met	in	the	gymnasium,	adding	that	they	should	not	revile
anyone	or	revenge	themselves	on	anyone	who	reviled	them,	and	that	they	should
practice	listening,	as	a	way	of	learning	to	speak.	Iamblichus	interjected	a
personal	opinion	that	because	of	these	moral	teachings	to	the	youth,	Pythagoras
really	did	deserve	to	be	called	divine.

In	Pythagoras’	address	to	the	women,	wrote	Iamblichus,	he	expressed	high



In	Pythagoras’	address	to	the	women,	wrote	Iamblichus,	he	expressed	high
regard	for	female	piety—particularly	important	in	a	city	whose	goddess	was
connected	with	all	matters	pertaining	to	women.	He	recommended	equity	and
modesty	and	appropriate	offerings	rather	than	blood	and	dead	animals	or
anything	extravagant.	Women	should	be	cheerful	in	conversation	and	behave	so
that	others	could	speak	only	good	of	them.	A	woman	should	know	that	it	was	all
right	to	love	her	husband	more	than	she	loved	her	parents.	She	should	not
oppose	her	husband,	but	apparently	it	was	acceptable	to	discuss	matters	with	him
and	disagree,	because	Pythagoras	said	that	if	her	husband	gave	way	to	her,	she
must	not	overinterpret	that	and	think	he	had	made	himself	subject	to	her.	Again
Iamblichus	reported	success	that	seems	too	good	to	be	true:	Marital	faithfulness
in	Croton	became	proverbial.	Women	offered	their	costliest	garments	in	the
temple	of	Hera.

Though	Iamblichus	went	into	greater	detail	than	Diogenes	Laertius	or
Porphyry,	the	latter	two	were	not	silent	when	it	came	to	what	Pythagoras	taught
the	Crotonians.	Diogenes	Laertius	reported	a	teaching	Iamblichus	failed	to
mention:	Some	men	have	a	“slavish	disposition”	and	are	“born	hunters	after
glory,”	like	men	in	a	Great	Game	contending	for	prizes.	Others	are	covetous,
like	those	who	come	to	the	game	for	“purposes	of	traffic.”	Others	are	spectators.
These	are	the	seekers	after	the	truth.	Twenty-six	centuries	after	Pythagoras	(and
about	seventeen	after	Diogenes	Laertius),	Bertrand	Russell	would	make	much	of
this	Pythagorean	distinction.	Diogenes	Laertius	also	mentioned	Pythagoras’
advice	not	to	pray	for	specific	things,	because	you	do	not	know	what	is	good	for
you.

Iamblichus	summed	up	Pythagoras’	teaching	in	what	he	called	the	“epitome
of	Pythagoras’s	own	opinions,”	which	he	would	continue	to	stress	in	private	and
in	public:	one	should	by	all	means	possible	amputate	disease	from	the	body,
ignorance	from	the	soul,	luxury	from	the	belly,	sedition	from	the	city,	discord
from	the	household,	and	excess	from	all	things	whatsoever.	Iamblichus	also
praised	Pythagoras’	teaching	method—not	to	spout	facts	and	precepts	but	to
teach	things	(such	as	the	power	of	remaining	silent)	that	would	prepare	his
listeners	to	learn	the	truth	in	other	matters	as	well.

Porphyry	described	the	splendid	physical	impression	Pythagoras	made:	“His
presence	was	that	of	a	free	man,	tall,	graceful	in	speech	and	in	gesture.”	He	was
“endowed	with	all	the	advantages	of	nature	and	prosperously	guided	by
fortune.”*

Iamblichus	numbered	the	followers	who	soon	gathered	around	Pythagoras	at
six	hundred.	Members	of	the	brotherhood	were	advised	to	regard	nothing	as
“exclusively	their	own,”	wrote	Diogenes	Laertius.	Friendship	implied	equality.



“exclusively	their	own,”	wrote	Diogenes	Laertius.	Friendship	implied	equality.
They	were	to	own	all	possessions	in	common	and	bring	their	goods	to	a	common
storehouse.	Apparently,	to	judge	from	an	incident	later,	in	Syracuse,	a	good
many	Pythagoreans	complied	with	this	advice.	Because	of	this	“common
sharing,”	Pythagoras’s	followers	became	known	as	Cenobites,	from	the	Greek
for	“common	life.”

However,	not	all	Pythagoreans	had	equal	status	within	the	community.	The
six	hundred	were	Pythagoras’	“students	that	philosophized,”	wrote	Iamblichus,
Porphry,	and	their	source,	Nicomachus.	There	was	a	much	bigger	group,	called
the	Hearers,	about	two	thousand	men	who	along	with	their	wives	and	children
would	gather	in	an	auditorium	“so	great	as	to	resemble	a	city”	and	built	for	the
purpose	of	coming	to	learn	laws	and	precepts	from	Pythagoras.	It	hardly	seems	a
practical	possibility	that	these	people,	presumably	including	many	of	Croton’s
most	prosperous,	influential	citizens,	all	“stopped	engaging	in	any	occupation.”
However,	according	to	the	three	biographers	they	did	all	live	together	for	a	while
in	peace,	they	held	one	another	in	high	esteem,	and	they	shared	at	least	a	portion
of	their	possessions.	Many,	it	seems,	revered	Pythagoras	so	greatly	that	they
ranked	him	with	the	gods	as	a	genial,	beneficent	divinity,	but	Iamblichus
observed	that,	contra	Nicomachus’	account,	they	perhaps	did	not	all	think	of
Pythagoras	quite	as	a	god.	In	his	treatise	On	the	Pythagoric	Philosophy,	Aristotle
wrote	that	the	Pythagoreans	made	a	distinction	among	“rational	animals”:	There
were	gods,	and	men,	and	beings	in	between	like	Pythagoras.

WHEN	PYTHAGORAS	first	arrived,	Croton	was	at	a	low	ebb	of	military	prestige
and	clout.	The	communities	of	Magna	Graecia	were	in	a	chronic	state	of
conflict,	internal	and	external,	each	attempting	with	varying	success	to	dominate
and	enslave	the	next.	The	latest	dismal	chapter	in	this	story	had	been	Croton’s
embarrassing	defeat	by	the	army	of	the	city	of	Locri	at	the	Sagras	river,	a	few
miles	to	her	south.	Iamblichus	called	Croton	“the	noblest	city	in	Italy,”	but	in
530	B.C.	she	was	licking	her	wounds	from	that	disaster,	while	Sybaris	was	still	a
jewel	in	the	crown	of	Greek	colonial	cities.

Croton	nevertheless	controlled	considerable	territory.	Her	normally
acknowledged	chora	extended	at	least	as	far	as	what	are	now	the	river	Neto	to
the	north,	in	the	direction	of	Sybaris,	and	the	river	Tacino	to	the	south.	The
coastal	lands	between	those	two	river	mouths	(with	the	city	centered	between)
were	hers,	and	away	from	the	coast	Croton’s	territory	extended	into	the
mountains,	where	the	tributaries	of	the	two	rivers	originate	among	precipitous
slopes	and	deep,	narrow	valleys*	reminiscent	of	the	early	colonists’	homeland	in
Achaea.	In	the	two	centuries	since	Myskellos	had	brought	those	settlers,	the



coastal	forests	had	begun	to	disappear,	and	the	farmlands	most	vital	to	the	life	of
Croton’s	people	were	large	clayey	plains	to	the	south	of	the	city,	watered	by
numerous	springs	and	two	more	rivers	and	divided	into	farmsteads	that
cultivated	wheat	and	cereals.	Other	cleared	areas	to	the	north	were	suitable	for
livestock.

Inevitably	a	community	expected	a	man	like	Pythagoras	to	assume	a	public
role,	and	he	and	his	associates	soon	did,	either	by	advising	the	oligarchical
leaders	or	as	part	of	the	oligarchy.	They	became	influential,	probably	extremely
so,	not	only	in	the	city	and	its	environs	but	in	other	communities	of	the	region.
Porphyry	reported	that	Pythagoras	was	so	extraordinarily	persuasive	that
Simicus,	the	tyrant	of	Centoripa,	“heard	Pythagoras’s	discourse,	abdicated	his
rule,	and	divided	his	property	between	his	sister	and	the	citizens.”	Local	lore	still
today	agrees	with	the	early	historians	that	Pythagoras	inspired	a	love	of	liberty	in
the	cities	of	Magna	Graecia	and	restored	their	individual	independence,	and	that
he	and	his	followers	were	so	successful	in	rooting	out	partisanship,	discord,	and
sedition,	and	in	establishing	just	laws,	that	the	cities	flourished	in	peace	for
several	generations	and	became	models	for	others	before	again	falling	into
disputes	and	warfare.	“Love	of	liberty”	may	be	a	later	ideal	attributed	with
hindsight	to	the	Pythagoreans.	Political	thinking	during	Pythagoras’	period	in	the
Greek	world	saw	good	government	not	in	terms	of	how	much	liberty	was
allowed	but	in	terms	of	order	and	the	well-being	of	the	community.5	Diogenes
Laertius	had	information	that	Pythagoras	gave	the	Crotonians	a	constitution,	and
that	he	and	his	followers	were	an	“aristocracy”	in	the	highest,	literal	sense	of	the
word:	“rule	by	the	best.”

In	510	B.C.,	twenty	years	after	Pythagoras’	arrival	in	Croton,	Milo,	of
Olympic	wrestling	and	ox-toting	fame	and	by	then	a	follower	of	Pythagoras,	led
Croton’s	army	against	her	opulent	neighbor	Sybaris.	Like	a	latter-day	Thales,
Milo	reputedly	exercised	his	own	brand	of	military	hydraulics,	diverting	the
river	Crathis	to	flood	the	enemy	city,	and	the	army	of	Pythagorean	Croton	razed
Sybaris	to	the	ground.	Modern	Sibari	occupies	a	different	site	from	Greek
Sybaris.	Because	the	more	ancient	Sybaris	perished	forever	with	the	defeat	by
Croton,	the	archaeological	site	there,	buried	beneath	a	Roman	town	and	part	of
the	Appian	Way,	has	yielded	a	treasure	trove	of	artifacts.	Among	them	are
covered	pots	from	the	seventh	century	B.C.	the	size	of	modern	sugar	bowls,
whose	lids	are	decorated	with	what	later	would	be	called	Pythagorean	triangles.
It	was	a	super-wealthy,	cultured—indeed,	“sybaritic,”—city	that	Milo	destroyed,
but	though	archaeologists	have	done	extensive	work,	the	only	trace	visible	to
modern	visitors	is	a	water-filled	hole	beneath	excavations	of	the	Roman	town.

With	Sybaris	gone,	Croton’s	influence	and	power	in	the	region	reached	a



With	Sybaris	gone,	Croton’s	influence	and	power	in	the	region	reached	a
zenith,	and	historians	credit	Pythagoras	and	the	teaching	and	training	he	initiated
with	bringing	about	this	rise	in	Croton’s	fortunes.	If	Diogenes	Laertius,
Porphyry,	and	Iamblichus	are	to	be	believed—and	modern	scholarship	does	not
say	them	nay—he	was	an	ancient	example,	and	arguably	the	most	successful	one
in	history,	of	Plato’s	“philosopher	king.”

Or	was	it	all	a	sham?	There	is	a	darker	version	of	the	tradition	that	has
Pythagoras	and	his	followers	ruling	in	an	autocratic,	repressive	way.	In	this
retelling,	the	war	with	Sybaris	began	when	Croton,	at	Pythagoras’	insistence,
gave	sanctuary	to	five	hundred	citizens	of	Sybaris	who	had	been	stripped	of	their
property	and	banished.	A	social	reform	in	Sybaris	had	justifiably	confiscated	the
excessive	wealth	of	these	five	hundred	and	distributed	it	to	the	poor,	and
Pythagoras’	sympathy	for	the	formerly	rich	exiles	revealed	him	in	an
unfavorable	light	as	a	defender	of	an	autocratic	and	repressive	status	quo.	This
story	does	not	actually	conflict	with	the	reputed	egalitarianism	of	the
Pythagoreans,	for	there	is	no	evidence	that	their	egalitarianism	applied	to	society
in	general	outside	the	Pythagorean	brotherhood.	No	one	knows	what	reasons
Pythagoras	might	have	had	for	wishing	to	restore	the	status	quo	in	Sybaris,	or
whether	his	reforms	in	Croton	were	motivated	by	personal	demagoguery,	a
desire	to	strengthen	the	aristocratic	class	structure,	or	a	wish	to	transform	the
communities	to	conform	to	higher	moral	standards.	All	the	early	biographers—
and	fervent	revolutionaries	of	eighteenth-and	nineteenth-century	Europe—were
sure	it	was	the	last.

Independent	evidence	speaks	to	Pythagoras’s	impact	on	the	economics	of
Croton.6	Numismatists	credit	him	and	his	first	followers	with	the	introduction	of
a	coinage	with	an	incuse	(hammered-in)	design,	the	earliest	coinage	used	in
Croton	and	the	area	she	ruled.	These	coins	were	both	beautiful	and	difficult	to
create,	and	those	familiar	with	the	history	of	minting	recognize	the	oddity	and
significance	of	their	sudden	appearance	in	this	time	and	place,	with	apparently
no	gradual	evolutionary	process	leading	up	to	or	explaining	their	emergence.
The	history	of	coinage	does	not	normally	work	this	way.	Not	that	these	were	the
first	coins.	There	were	earlier	coins—for	example,	in	Lydia,	the	region	east	of
Miletus,	before	700	B.C.	But	an	innovation	like	the	coins	in	Croton	would	seem
to	indicate	a	polymath—a	“genius	of	the	order	of	Leonardo	da	Vinci,”	in	the
words	of	the	historian	C.	T.	Seltman.7	Given	the	area	where	the	coins	were	used
and	the	timing	of	their	appearance,	the	inventor	by	default	must	have	been
Pythagoras,	son	of	a	prominent	merchant	with	experience	in	a	world-wide
market,	familiar	(if	his	father	was	a	gem	engraver)	with	beautiful	small	design,
and	skilled	with	numbers.	Aristoxenus,	who	had	friends	among	the	Pythagoreans



of	the	fourth	century	B.C.,	wrote	that	Pythagoras	introduced	certain	types	of
weights	and	measures	but	“diverted”	the	study	of	numbers	from	mere	mercantile
practice,	implying	that	Pythagoras	also	understood	the	use	of	numbers	in
connection	with	such	practice.	It	is	difficult	to	believe	that	he	had	nothing	to	do
with	the	invention	and	introduction	of	the	remarkable	Crotonian	coinage.

Though	Pythagoras	undoubtedly	made	serious	enemies,	for	many	years	that
seemed	not	to	hamper	him	or	his	supporters	very	much.	Pythagorean	leadership
extended	the	area	Croton	dominated	much	further	both	while	Pythagoras	lived
there	and	in	the	fifty	years	after	his	death	or	exile—as	far	as	Caulonia	in	the
south	(almost	to	the	doorstep	of	the	old	enemy,	Locri)	and	to	the	sanctuary	of
Apollo	Aleo	at	Ciro	Marina	in	the	north	(well	on	the	way	to	Sybaris).	The
acquisition	of	Ciro	Marina	was	something	to	be	celebrated,	since	already	at	this
early	date	it	was	famous	for	its	fine	wine.	To	the	west,	Croton’s	influence
extended	almost	to	the	Tyrrhenian	Sea,	to	Terina.	That	was	the	best	Croton
would	ever	do.	She	was	no	Rome.

PORPHYRY,	MORE	THAN	Iamblichus	or	Diogenes	Laertius,	stressed	the	silence	of
the	Pythagoreans	and	recognized	not	only	its	value	but	also	how	disastrous	it
would	prove	for	the	Pythagorean	tradition.	It	is	frustrating	to	find	that,	though
Porphyry	mentioned	Pythagoras	winning	over	the	Crotonian	rulers	and	described
the	invitations	to	address	the	youth	and	women—and	though	it	was	Porphyry
who	identified	Dicaearchus	as	the	source	of	this	information—he	made	no	claim
to	be	able	to	report	with	any	certainty	the	details	of	what	Pythagoras	told	his
audiences.	He	attributed	this	lack	of	information	to	Pythagorean	silence.	Because
all	three	biographers	tended	to	err	on	the	side	of	believing	their	sources	too
readily	rather	than	too	little,	Porphyry’s	reluctance	makes	what	he	said	on	the
matter	of	Pythagorean	silence	particularly	credible.	According	to	him,
Pythagoras	and	those	who	followed	him	during	his	lifetime	did	not	reveal	their
ideas,	principles,	or	teachings,	or	the	details	of	their	discipline	to	others.	They
wrote	nothing	down,	keeping	“no	ordinary	silence.”	In	great	part	because	of	this
secrecy,	much	information	about	Pythagoras	had	come	down	through	the
centuries	in	scattered,	fragmentary,	hearsay	form,	consisting	of	what	other
people	thought	he	and	his	associates	taught	and	what	their	way	of	life	was.

Porphyry	was	not	alone	in	stressing	Pythagorean	silence.	Diogenes	Laertius
made	it	clear	that	there	were	two	kinds:	On	the	one	hand,	“silence”	meant
keeping	doctrine	secret	from	outsiders;	on	the	other,	it	meant	maintaining
personal	silence	in	order	to	listen	and	learn—and	that	applied	especially	among
followers	in	“training.”	For	five	years	they	were	silent,	listening	to	discourses.



Only	after	that,	if	approved,	were	they	allowed	to	meet	Pythagoras	himself	and
be	admitted	to	his	house.	The	advantage	to	be	gained	from	remaining	silent	was
an	ancient	theme	that	also	appeared	in	the	Wisdom	chapters	of	the	Hebrew
Scriptures	and	was	picked	up	by	early	Christian	church	fathers	a	few	generations
after	Iamblichus.

Did	the	first	type	of	silence	extend	to	putting	nothing	in	writing?	Of	the
three	third-and	fourth-century	biographers,	Diogenes	Laertius	was	the	only	one
to	insist	that	Pythagoras	wrote	down	some	of	his	doctrines,	but	the	section	of	his
biography	titled	“Works	of	Pythagoras”	is	confusing	and	unconvincing.	He
began	on	shaky	ground	with	the	words:

Some	say,	mistakenly,	that	Pythagoras	did	not	leave	a	single
written	work	behind	him.	However,	Heraclitus	the	natural
scientist	pretty	well	shouts	it	out	when	he	says:	“Pythagoras,	son
of	Mnesarchus,	practiced	inquiry	more	than	any	other	man,	and
selecting	from	these	writings	he	made	a	wisdom	of	his	own—a
polymathy,	a	worthless	artifice.”

It	would	seem,	contra	Diogenes	Laertius,	that	what	Heraclitus	“shouted	out”	was
that	Pythagoras	could	read	and	plagiarize,	not	that	he	wrote	anything	down.
Diogenes	Laertius	was	right,	however,	that	Heraclitus’	words	were	worth	careful
scrutiny,	because	his	lifetime	probably	overlapped	Pythagoras’	and	his
comments	about	him	are	among	the	oldest	that	survive.	Though	in	Heraclitus’
own	philosophy	he	often	sounded	like	a	Pythagorean,	if	he	ever	had	anything
good	to	say	about	Pythagoras	there	is	no	record	of	it.	He	had	little	better	to	say
about	anyone	else.	He	was	contemptuous	of	most	of	humankind,	and	in
particular	of	polymaths,	coming	out	with	such	disparaging	remarks	as	“Much
learning	does	not	teach	thought—or	it	would	have	taught	Hesiod	and
Pythagoras,	and	again	Xenophanes	and	Hecataeus.”	Be	that	as	it	may,	there	is	no
reason	to	take	Heraclitus’	diatribe	as	evidence	that	Pythagoras	wrote	a	book.

Diogenes	Laertius	was	not	equally	convinced	about	all	claims	for
Pythagoras’	authorship,	but	he	believed	that	Pythagoras	had	written	three	books
that	still	existed	in	his	lifetime.	If	so,	they	then	rapidly	disappeared	or	were
discredited,	for	Porphyry,	only	a	few	years	later,	wrote,	“He	left	no	book.”	There
was	plenty	of	reason	to	be	skeptical	about	the	authorship	of	the	books	that
Diogenes	Laertius	listed,	considering	the	number	of	Pythagorean	forgeries	that
had	appeared	during	the	Hellenistic	and	Roman	eras.	However,	information	that
Pythagoras	wrote	poems	under	the	name	of	Orpheus	came	from	an	earlier,	more



reliable	source.	Ion	of	Chios,	a	scholar,	playwright,	and	biographer	born	shortly
after	Pythagoras	died,	tried	to	determine	the	true	source	of	some	poems	that	were
widely	supposed	to	have	been	written	by	Orpheus.	He	decided	that	the	author
was	Pythagoras	and	that	Pythagoras	had	attributed	them	to	Orpheus.



CHAPTER	4

“My	true	race	is	of	Heaven”
Sixth	Century	B.C.

A	CHILDHOOD	IN	A	PROSPEROUS	agrarian	family	that	was	also	involved	in	the
mercantile	world	centered	in	Samos,	with	its	temple	of	Hera,	had	placed
Pythagoras	at	a	crossroads	of	different	beliefs	about	life	after	death.	If	there	was
an	orthodox	view	of	the	afterlife	and	immortality	in	the	ancient	Greek	world,	it
was	that	reflected	in	Homer’s	epics	and	later	in	the	official	cults	of	the	cities	and
in	much	of	the	great	literature.	A	human	soul,	or	psyche,	survived	after	death,
but	this	survival	was	not	an	attractive	one.	For	the	Homeric	heroes,	the	true
“self”	was	the	body,	and	the	good	life	was	closely	tied	with	it.	What	good	was
survival	in	a	form	that	could	not	enjoy	feasting,	combat,	human	love,	sex,
comradeship?	Death	was	separation	from	these,	leaving	the	soul	in	a	weak,
witless	state—a	shadow,	a	dream,	smoke,	a	twittering	bat.	Only	the	gods	had	a
better	sort	of	immortality,	but	not	in	the	sense	that	they	survived	death,	for	they
never	died.	Furthermore,	they	jealously	guarded	their	immortality.	Woe	betide
any	human	who	tried	to	overstep	the	limits	and	attain	the	immortality	of	the
gods.

Alongside	this	mainstream,	people	who	lived	in	the	countryside,	and	some
in	the	cities,	too,	clung	to	hundreds	of	small	clusters	of	beliefs,	so	ancient	that	no
one	could	trace	their	origins,	that	provided	better	answers	to	questions	raised	by
an	unfair	world	and	suggested	there	would	be	future	compensation	for	its
injustice	and	suffering.	One	“mystery	cult”	had	been	centered	in	the	town	of
Eleusis,	and	when	Eleusis	became	part	of	Athens	a	few	years	before	Pythagoras
was	born,	the	cult	outgrew	its	local	origins	and	spread	across	the	Hellenic	world.
It	required	initiation	into	the	mysteries	of	the	earth	mother	Demeter	and	her
daughter	Persephone,	an	adoption	into	the	family	of	the	gods	that	carried	with	it
a	happier	life	in	the	next	world.	After	initiation,	normal	everyday	affairs	could
continue	with	no	onerous	new	requirements.

The	Orphic	cult,	by	contrast,	involved	a	complicated	set	of	beliefs	in	which
the	soul	was	a	mixture	of	the	divine	and	the	earthly.	Developing	the	divine	part
and	suppressing	the	earthly	required	a	relentless	pursuit	of	purity,	including
ceremonies	of	ritual	cleansing	and	the	avoidance	of	eating	meat.	This	was	the
work	of	more	than	one	lifetime.	A	soul	was	reborn	again	and	again,	with	its



work	of	more	than	one	lifetime.	A	soul	was	reborn	again	and	again,	with	its
conduct	in	one	life	determining	its	fate	in	the	next.	The	ultimate	goal	was	to
become	one	with	Bacchus,	or	“a	Bacchus.”

Orphism	had	roots	before	the	historical	era	in	the	worship	of	Dionysus,
another	name	for	Bacchus,	probably	at	first	a	fertility	god	and	only	much	later
connected	with	wine	and	drunkenness.	He	was	a	god	of	the	Thracians,	an
agricultural	people	who	lived	north	of	mainland	Greece	in	the	area	bounded	by
the	Aegean	Sea,	the	Black	Sea,	and	the	Danube	River.	The	Greeks	regarded
them	as	primitive	barbarians,	and	the	fifth-century	historian	Herodotus	described
them	as	people	who	“led	miserable	lives	and	were	rather	stupid.”	When
Dionysus/Bacchus	worship	reached	Greece	at	about	the	beginning	of	the
historical	era,	it	was	greeted	with	hostility,	but	its	unorthodoxy	and	savagery
gave	it	an	irresistible	fascination	that	was	portrayed	in	Euripides’	play	The
Bacchae.	The	cult	exalted	the	status	of	women	and,	if	the	playwright	is	to	be
believed,	married	and	unmarried	women	retreated	into	the	mountains	in	large
bands	to	dance	in	ecstasy	and	to	tear	apart	wild	animals	and	eat	them	raw.	A
tradition	of	strong,	involved	women	may	have	come	to	the	Pythagoreans	through
Orphism,	but	in	a	less	bloodthirsty	guise.

By	the	time	of	Pythagoras,	Orphic	communities	were	all	over	the	Greek
world,	including	southern	Italy	and	Sicily.	The	primitive	worship	of
Dionysus/Bacchus	had	evolved	into	something	more	ascetic,	stimulating	the
mind	instead	of	(or	as	well	as)	the	body	and	psyche.	Cult	members	attributed	its
reformation	to	Orpheus,	whom	frenzied	Bacchic	women	had	reputedly	torn	to
pieces	for	his	efforts.	Orpheus	was	probably	a	real	person	clothed	in	legend.	He
seems	to	have	been	regarded	first	as	a	priestly	figure,	while	his	lyre	and
connection	with	music,	and	the	status	of	a	semi-mythical	hero,	came	later.	Some
called	him	a	god.1

If	the	stories	about	Pythagoras’	youthful	travels	were	genuine,	he	was
familiar	with	religious	traditions	in	Egypt	and	Mesopotamia,	and	perhaps	(if
Josephus	was	right)	with	the	beliefs	of	the	Hebrews	near	Mount	Carmel	or	in
Babylon.	Regardless	of	the	authenticity	of	the	details,	the	impression	that	comes
across,	reinforced	by	the	story	of	his	initiation	into	the	rites	of	the	priests	of
Morgos	on	Crete,	was	of	a	man	intent	on	exploring	in	depth	and	becoming
personally	involved	in	many	religious	ideas	and	beliefs.

In	Croton,	Pythagoras	and	his	followers	did	not	abandon	the	polytheism	of
the	Homeric/Olympic	tradition.	Some	thought	Pythagoras	was	an	incarnation	of
Apollo,	and	that	god’s	association	with	moderation,	intelligence,	and	order	was
in	accord	with	Pythagorean	ideals.	As	for	other	gods,	the	fact	that	the	building
boom	at	the	temple	of	Hera	occurred	when	Pythagoras’	influence	was	strong	in
Croton	is	probably	no	coincidence.	However,	when	Pythagoras	chose	what	he



Croton	is	probably	no	coincidence.	However,	when	Pythagoras	chose	what	he
would	believe	and	teach	with	regard	to	immortality,	he	came	down	decisively
with	the	Orphic	cult,	with	the	doctrine	of	transmigration	of	the	soul	or
reincarnation.	This	was	no	secret.	It	was	“very	well	known	to	everyone,”	wrote
Porphyry.

An	early	fragment	bears	witness	that	Pythagoras	believed	a	good	man	would
be	rewarded	in	the	next	life.	The	fragment	is	from	Ion	of	Chios,	the	near
contemporary	of	Pythagoras	who	attributed	an	Orphic	poem	to	him,	and	who,
though	perhaps	not	a	member	of	the	Pythagorean	community,	adopted
Pythagorean	ideas:

So	he	[a	good	human	being],	endowed	with	manliness	and
modesty,	has	for	his	soul	a	joyful	life	even	in	death,	if	indeed
Pythagoras,	wise	in	all	things,	truly	knew	and	understood	the
minds	of	men.

Pythagoras	went	further	than	belief	in	reincarnation.	He	claimed	he	could
remember	his	past	lives.	This,	too,	had	roots	in	Orphism.	An	inscription	on	an
Orphic	document	known	as	the	Petelia	tablet	instructs	a	soul	how	to	show	itself
worthy	of	joining	the	divine	and	worthy	of	“Memory,”	an	Orphic	reference	to
the	special	kind	of	memory	that	Pythagoras	claimed	to	have.2

The	earliest	reference	to	Pythagoras’	ability	to	remember	his	past	lives	is
from	the	fifth	century	B.C.	poet-philosopher	Empedocles,	who	came	from
Acragas	in	Sicily	and	like	Ion	was	born	near	the	time	Pythagoras	died.	He	was
often	called	Empedocles	the	Pythagorean,	but	much	of	his	philosophy	was
different	from	Pythagorean	teaching.	On	the	doctrine	of	transmigration	he	was	in
enthusiastic	agreement:

There	was	among	them	a	man	of	immense	knowledge
who	had	obtained	vast	wealth	of	understanding,
a	master	especially	of	every	kind	of	wise	deed	[or	“cunning	act”].
For	when	he	reached	out	with	all	his	mind
he	easily	saw	each	and	every	thing
in	ten	or	twenty	human	lives.

Iamblichus,	without	a	murmur,	accepted	Pythagoras’	ability	to	recall	his	past
lives,	but	not	all	the	details	of	how	he	acquired	that	ability	and	what	he



remembered.	The	memories	began	with	Pythagoras’	life	as	Aethalides,	a	son	of
the	god	Hermes—the	sort	of	paternity	Iamblichus	found	impossible	to	believe.
However	that	may	be,	Hermes	allowed	Aethalides	to	choose	a	gift,	anything
short	of	the	immortality	of	the	gods.	Aethalides	asked	to	be	able	to	remember
everything	that	had	happened	to	him	in	his	former	lives.	So	it	came	about	that
Pythagoras	could	recall	not	only	his	life	as	Aethalides	but	also	as	Euphorbus,	as
Hermotimus,	and	as	Pyrrhus,	a	Delian	fisherman,	and	much	else	besides.
Euphorbus	was	a	hero	in	the	Trojan	War	who	was	immortalized	in	Homer’s
Iliad.	Iamblichus	and	Porphyry	both	pictured	Pythagoras	singing	the	funeral
verses	Homer	wrote	for	Euphorbus,	accompanying	himself	“most	elegantly”	on
a	lyre:

The	shining	circlets	of	his	golden	hair
Which	even	the	Graces	might	be	proud	to	wear,
Instarred	with	gems	and	gold,	bestrew	the	shore
With	dust	dishonored,	and	deformed	with	gore.
.	.	.	.
Thus	young,	thus	beautiful	Euphorbus	lay,
While	the	fierce	Spartan	tore	his	arms	away.3

Diogenes	Laertius	gave	the	full	version	of	a	tale	that	many	thought
constituted	proof	of	Pythagoras’	memories,	but	that	Iamblichus	rejected	as	being
“too	popular	in	nature”	and	Porphyry	thought	“too	generally	known”	to	require
telling:*	After	Euphorbus	died	by	the	hand	of	King	Menelaus	in	the	Trojan	War,
his	soul	(either	directly	or	after	several	other	lifetimes)	passed	into	Hermotimus.
Hermotimus,	in	turn,	was	able	to	prove	this	had	indeed	happened.	In	some
versions	of	the	story	it	occurred	at	Branchidae	in	western	Turkey;	in	others,	at
Argos	on	the	Greek	mainland;	but,	wherever	it	happened,	Hermotimus	entered	a
temple	where	a	decaying	shield	was	nailed	up	on	the	wall,	little	of	it	intact
except	an	ivory	boss.	This	relic	had	either	been	left	by	Menelaus	as	a	tribute	to
Apollo	or	was	simply	among	spoils	of	the	Trojan	War.	At	the	sight	of	the	rotten
old	shield,	Hermotimus	burst	into	tears.	People	standing	near	questioned	him,
and	he	muttered	that	he	himself,	as	Euphorbus,	had	carried	it	at	Troy.	The
bystanders	thought	he	was	insane,	but	he	told	them	that	they	would	find	the
name	Euphorbus	inscribed	on	the	back.	They	unfastened	the	shield	from	the	wall
and	discovered,	in	archaic	lettering,	that	very	name.4	Hermotimus	eventually
died	and	became	Pyrrhus,	a	fisherman	of	Delos,	and,	some	time	after	Pyrrhus,



Pythagoras.	Nor	was	that	the	full	extent	of	Pythagoras’	memories.	His	soul	had
passed	into	many	plants	and	animals,	and	he	could	recall	his	suffering	in	Hades,
as	well	as	the	sufferings	endured	by	the	others	there.

In	the	doctrine	of	transmigration	as	Pythagoras	taught	it,	a	soul	was	not
irrevocably	doomed	to	an	eternal	round	of	animal	and	vegetable	existences.
Escape	was	possible,	as	it	was	in	Orphism.	The	possibility	and	method	of	this
escape	came	to	stand	at	the	heart	of	the	Pythagorean	view	of	the	world.	There
was	a	divine	level	of	immortality	from	which	each	soul	was	a	“torn	off
fragment,”	a	mere	“spark	of	the	divine	fire,”	held	captive	in	a	long	train	of	dying
bodies.5	The	goal	of	a	wise	human	was	to	break	free	of	bondage	to	this	treadmill
of	earthly	reincarnation	and	rejoin	the	sublime	level.

By	tradition,	Pythagoras	coined	the	term	“philosopher,”	meaning	“lover	of
wisdom,”	but	it	is	probably	more	correct	to	say	that	he	gave	it	a	new	meaning.	A
philosopher	did	not	merely	love	wisdom,	he	pursued	it	with	all	his	might,
because	that	was	the	way	to	regain	the	true,	divine	life	of	the	soul.	The	historian
Aristoxenus	wrote	of	the	Pythagoreans	he	knew:	“Every	distinction	they	lay
down	as	to	what	should	be	done	or	not	done	aims	at	conformity	with	the	divine.
This	is	their	starting-point;	their	whole	life	is	ordered	with	a	view	to	following
God,	and	it	is	the	governing	principle	of	their	philosophy.”6	All	philosophy	and
inquiry—all	use	of	the	powers	of	reason	and	observation	to	gain	an
understanding	of	nature,	human	nature,	the	world,	and	the	cosmos,	including
what	would	later	be	called	“science”—was	linked	with,	indeed	was,	the	effort	to
purify	the	soul	and	escape	the	wheel	of	reincarnation.	This	connection,	for	the
Pythagoreans,	was	the	most	exalted	living-out	of	the	doctrine	of	the	“unity	of	all
being.”

Such	a	relentless	pursuit	had	been	recommended	in	much	more	ancient
wisdom	literature,	including	Proverbs	in	the	Hebrew	Scriptures	(“Old
Testament”).	However,	nowhere	else	did	the	search	for	the	wisdom	of	God	or
the	gods	include	so	comprehensively	the	search	for	knowledge	about	the
physical	universe.	As	the	scholar	W.	K.	C.	Guthrie	put	it:

It	is	to	this	idea	of	assimilation	to	the	divine	as	the	legitimate	and
essential	aim	of	human	life	that	Pythagoras	gave	his	allegiance,
and	he	supported	it	with	all	the	force	of	a	philosophical	and
mathematical,	as	well	as	a	religious,	genius.	In	this	lies	the
originality	of	Pythagoreanism.7

In	a	less	reverent	vein,	Diogenes	Laertius	quoted	the	poet	Xenophanes	of
Colophon,	who	lived	most	of	his	adult	life	in	Sicily	and	Italy	and	was	probably	a



Colophon,	who	lived	most	of	his	adult	life	in	Sicily	and	Italy	and	was	probably	a
contemporary	of	Pythagoras,	though	he	survived	him	by	many	years.
Xenophanes	wrote	satirical	poems,	and	in	these	lines	he	made	light	of
Pythagoras’	belief	in	reincarnation:

And	once	when	he	passed	a	puppy	that	was	being	whipped
they	say	he	took	pity	on	it	and	made	this	remark:
“Stop,	do	not	beat	him;	for	it	is	the	soul	of	a	dear	friend—
I	recognized	it	when	I	heard	its	voice.”*

This	verse	is	usually	taken	to	mean	that	Pythagoras	claimed	to	recognize	the
voice	of	a	friend	who	had	died	and	been	reincarnated	as	the	puppy,	but	for	a
Pythagorean	it	would	have	had	a	more	profound	meaning.	A	“dear	friend”	was
any	member	of	a	vast	kinship,	embracing	all	of	nature	including	animals	and
vegetables	and	the	souls	of	humans.	In	no	other	Greek	society	was	that	kinship
so	celebrated	as	among	the	Pythagoreans,	or	so	firmly	believed	to	be	not	a
melting	pot	but	a	beautifully	ordered	unity:	in	the	words	of	W.	K.	C.	Guthrie,	“a
kosmos—that	untranslatable	word	which	unites,	as	perhaps	only	the	Greek	spirit
could,	the	notion	of	order,	arrangement	or	structural	perfection	with	that	of
beauty.”8	Some	Pythagoreans	extended	the	unity	to	time.	Aristotle’s	pupil
Eudemus	wrote	that	“if	we	are	to	believe	the	Pythagoreans	and	hold	that	things
the	same	in	number	recur—that	you	will	be	sitting	here	and	I	shall	talk	to	you,
holding	this	stick,	and	so	on	for	everything	else—then	it	is	plausible	that	the
same	time	too	recurs.”9

THE	BELIEF	THAT	souls,	at	death,	pass	into	other	persons,	animals,	or	plants	might
be	expected	to	have	had	implications	for	what	Pythagoreans	did	and	did	not	eat,
just	as	it	did	for	the	Orphic	cult.	However,	the	particulars	of	the	Pythagorean	diet
have	never	been	clear	to	anyone	except	Pythagoras	and	his	immediate	followers
and	have,	since	early	times,	been	subject	to	much	speculation,	many	opinions,
and	irreverent	humor.	Any	abstention	must	have	been	for	reasons	other	than	the
avoidance	of	eating	another	soul,	for	a	human	was	just	as	likely	to	be
reincarnated	as	a	vegetable,	and	you	had	to	eat	something.	Empedocles	is
supposed	to	have	remarked	that	if	you	could	choose	your	next	life,	a	lion	or	a
laurel	bush	would	be	good	choices.	Iamblichus	thought	Pythagoras	ordained
abstinence	from	animal	flesh	as	“conducive	to	peaceableness.”	A	man	trained	to
abominate	the	slaughter	of	animals	“will	think	it	much	more	unlawful	to	kill	a
man	or	engage	in	war.”



Aristotle	felt	sure	that	Pythagoras	and	his	followers	did	eat	the	meat	of
animals	except	the	womb	and	heart	and	sea	urchins.	Possibly	they	also	avoided
mullet,	added	Plutarch.	Diogenes	Laertius	insisted	that	red	mullet,	blacktail,	and
the	hearts	of	animals	were	forbidden	but	reported	that	Aristoxenus	said
Pythagoreans	ate	all	other	animals	besides	lambs,	oxen	used	in	agriculture,	and
rams.	Porphyry,	basing	his	conclusion	on	an	early	source	from	the	fourth	or
early	third	century	B.C.,	believed	Pythagoras	held	a	double	standard:	Someone
not	engaged	in	the	lifelong	Pythagorean	pursuit	of	wisdom—an	athlete	or
soldier,	for	instance	(recall	Pythagoras’	advice	to	the	young	Olympians)—could
eat	meat.	But	for	a	member	of	his	own	school	Pythagoras	allowed	only	a	ritual
taste	of	meat	being	offered	as	a	sacrifice	to	the	gods.	According	to	Porphyry,	this
abstinence	was	motivated	by	reverence	for	the	unity	and	kinship	of	all	life,	and
Pythagoras’	preferred	diet	included	honey;	bread	of	millet;	barley;	and	herbs,
raw	and	boiled.	Porphyry	even	provided	recipes	he	said	were	favorites	of
Pythagoras:

He	made	a	mixture	of	poppy	seed	and	sesame,	the	skin	of	a	sea-
onion,	well	washed	until	entirely	drained	of	the	outward	juices,	of
the	flowers	of	the	daffodil,	and	the	leaves	of	mallows,	of	paste	of
barley	and	chick	peas,	taking	an	equal	weight	of	which,	and
chopping	it	small,	with	honey	of	Hymettus	he	made	it	into	a
mass.	Against	thirst	he	took	the	seed	of	cucumbers,	and	the	best
dried	raisins,	extracting	the	seeds,	and	coriander	flowers,	and	the
seeds	of	mallows,	purslane,	scraped	cheese,	wheat	meal	and
cream,	all	of	which	he	mixed	up	with	wild	honey.

Porphyry	wrote	that	Pythagoras	did	not	claim	to	have	invented	these	recipes;
they	had	been	taught	by	Demeter	to	Hercules	when	he	was	sent	into	the	Libyan
desert.

Information	about	the	diet	of	later	Pythagoreans,	though	not	necessarily	the
diet	advised	by	Pythagoras	himself	more	than	a	century	before,	comes	from
fourth	century	B.C.	comic	plays	by	Antiphanes,	Alexis,	and	Aristophon.10	Their
portrayals	may	have	been	accurate	or	perhaps	were	only	commonly	accepted
stereotypes,	but	these	were	all	highly	respected	playwrights.	Antiphanes,	who
was	renowned	for	his	parody	and	astute	criticism	of	literature	and	philosophy,
wrote	that	“some	miserable	Pythagorists	were	in	the	gully	munching	purslane
and	collecting	the	wretched	stuff	in	sacks.”	In	his	play	The	Sack,	he	had	a
character	who	“like	a	Pythagorizer,	eats	no	meat	but	takes	and	chews	a



blackened	piece	of	cheap	bread.”	In	Alexis’	The	Men	from	Tarentum
“‘Pythagorisms’	and	fine	arguments	and	close-chopped	thoughts	nourish	them”
while	they	eat	daily	only	“one	plain	loaf	each	and	a	cup	of	water—a	prison	diet!
Do	all	wise	men	live	like	that?”	Apparently	not,	for	another	character	replied
that	some	Pythagoreans	“dine	every	four	days	on	a	single	cup	of	bran.”
Aristophon,	in	The	Pythagorist,	wrote:

For	drinking	water	[not	wine],	they	are	frogs;	for	enjoying	thyme
and	vegetables,	they	are	caterpillars;	for	not	being	washed,	they
are	chamber-pots;	for	staying	out	of	doors	all	winter,	blackbirds;
for	standing	in	the	heat	and	chattering	at	noon,	cicadas;	for	never
oiling	themselves,	dust-clouds;	for	walking	about	at	dawn	without
any	shoes,	cranes;	for	not	sleeping	at	all,	bats.

Alexis,	in	The	Men	from	Tarentum,	offered	a	witticism	that	became	so	current	it
was	probably	eventually	greeted	with	groans:	“The	Pythagorizers,	as	we	hear,
eat	no	fish	nor	anything	else	alive;	and	they’re	the	only	ones	who	don’t	drink
wine.”—“But	Epicharides	eats	dogs,	and	he’s	a	Pythagorean.”—“Ah,	but	he
kills	them	first	and	then	they’re	no	longer	alive.”	Diogenes	Laertius	took	up	the
same	theme	centuries	later	in	a	“jesting	epigram”	in	his	biography	of	Pythagoras:

You	are	not	the	only	man	who	has	abstained
From	living	food;	for	so	have	we;
And	who,	I’d	like	to	know,	did	ever	taste
Food	while	alive,	most	sage	Pythagoras?
When	meat	is	boiled,	or	roasted	well	and	salted,
I	do	not	think	it	well	can	be	called	living.
Which,	without	scruple	therefore	then	we	eat,
And	call	it	no	more	living	flesh,	but	meat.

THE	BEST-KNOWN	CONTROVERSY	about	Pythagoras’	diet	had	to	do	with	his	attitude
toward	beans—not	such	a	trivial	question	as	it	might	seem,	for	this	attitude	may
later	have	contributed	to	his	death.

The	poet	Callimachus	lived	in	the	third	century	B.C.	and,	in	addition	to	much
splendid	poetry,	produced	a	critical	and	biographical	catalog	of	the	authors
whose	works	were	in	the	collection	of	the	Alexandria	Library.	He	was	familiar
with	much	literature	that	was	no	longer	available	to	later	scholars	because	it



perished	when	the	library	burned.	Callimachus	agreed	with	an	idea	that	he
attributed	to	Pythagoras	himself:	that	beans	are	“a	painful	food.”	Cicero	wrote,
citing	Plato,	that	the	Pythagoreans	were	forbidden	to	eat	them	because	they
cause	flatulence	and	hence	are	not	conducive	to	peace	of	mind	and	a	good
night’s	sleep.	Other	reports	had	it	that	flatulence	was	an	indication	beans
contained	air.	Since	it	was	widely	held	that	the	soul	itself	was	air,	this	might
have	been	interpreted	to	mean	that	when	one	ate	a	bean	one	was	eating	a	soul.
Diogenes	Laertius	said	that	avoiding	beans	made	for	gentle	dreams,	“free	from
agitation.”	He	also	reported	several	reasons	given	by	Aristotle	why	the
Pythagoreans	did	not	eat	beans,	including	that	they	were	“used	in	elections	in
oligarchical	governments.”	Plato’s	pupil	Heracleides	Ponticus	connected	the
avoidance	of	beans	with	the	discovery	that	a	bean	placed	in	a	new	tomb,	buried
in	dung,	and	left	for	forty	days	took	on	the	appearance	of	a	human.	One	tale
about	Pythagoras’	power	to	communicate	with	animals	told	of	an	ox	that
Pythagoras	saw	eating	beans.	When	the	herdsman	mockingly	refused	to	follow
Pythagoras’	advice	to	order	the	ox	to	abstain,	Pythagoras	whispered	in	its	ear
and	the	ox	never	again	touched	a	bean.	Pythagoras	took	it	to	live	many	years	as
the	“sacred	ox”	at	Hera’s	temple.

Aulus	Gellius,	whose	second	century	A.D.	writings	preserve	many	fragments
of	otherwise	lost	works,	vehemently	disagreed	with	the	idea	that	Pythagoras
forbade	the	eating	of	beans.	Aristoxenus,	he	pointed	out,	had	insisted	that
Pythagoras	ate	plenty	of	them,	in	fact	more	than	any	other	vegetable,	because
“they	soothe	and	gently	relieve	the	bowels.”	Aulus	Gellius	also	believed	he
could	explain	the	unfortunate	misunderstanding:	It	stemmed	from	an	overly
naive	interpretation	of	a	poem	by	Empedocles	that	included	the	phrase:
“Wretches,	utter	wretches,	keep	your	hands	from	beans!”	Gellius’	scholarly
approach	revealed	that	the	word	“beans”	here	did	not	mean	the	vegetable;	it
meant	“testicles.”	Pythagoreans	used	obscurely	symbolic	aphorisms	that	could
only	be	deciphered	by	other	Pythagoreans,	and	when	Empedocles	spoke	of
“beans,”	Gellius	insisted,	he	intended	them	to	symbolize	the	cause	of	human
pregnancy	and	the	impetus	to	human	reproduction.	The	bean	is,	after	all,	a	seed,
with	similar	potential.	Gellius,	then,	interpreted	Empedocles’	phrase	to	mean,
“Avoid	sexual	indulgence!”11

Pythagoras	apparently	did	not	encourage	celibacy,	for	several	accounts	had
him	urging	his	followers	to	beget	children	so	as	to	leave	servants	of	god	to	take
their	place	in	the	next	generation.	But	sex,	it	seems,	stopped	there.	According	to
Diogenes	Laertius,	Pythagoras,	“did	not	indulge	in	the	pleasures	of	love”	and
advised	others	to	have	sex	only	“whenever	you	are	willing	to	be	weaker	than



yourself.”	In	contrast	to	all	the	humor	at	the	Pythagoreans’	expense,	Pythagoras
himself	came	across,	at	least	in	Diogenes	Laertius’	biography,	as	humorless,
though	not	necessarily	joyless.	He	“abstained	wholly	from	laughter,	and	from	all
such	indulgences	as	jests	and	idle	stories,”	advising	others	as	well	that	“modesty
and	decorum	consist	in	never	yielding	to	laughter,	without	looking	stern”—
which,	if	true,	indicates	that	Pythagoras	would	not	have	approved	of	Diogenes
Laertius’	“jesting	epigrams.”	Porphyry’s	description	showed	Pythagoras	not	so
much	humorless	as	extremely	even-tempered,	not	“elated	by	pleasure,	nor
dejected	by	grief,	and	no	one	ever	saw	him	either	rejoicing	or	mourning.”
Porphyry	attributed	this	“constancy”	to	Pythagoras’	careful	diet.

According	to	the	tradition,	Pythagoras	sired	children.	After	introducing	his
paragraph	concerning	Pythagoras’	family	with	the	words	“It	is	said,”	Porphyry
recorded	that	Pythagoras’	wife	was	Theano,	from	Crete,	the	daughter	of
Pythenax.	Pythagoras	and	Theano	had	a	daughter	named	Myia	“who	took
precedence	among	the	maidens	in	Croton	and,	when	a	wife,	among	married
women,”	and	also	a	son,	Telauges,	and	perhaps	a	second	son	named	Arignota.
Iamblichus	wrote	that	Pythagoras’	“acknowledged	successor,”	Aristaeus,
married	Pythagoras’s	widow	Theano	after	Pythagoras	died,	“carried	on	the
school,”	and	educated	Pythagoras’	children.	Among	those	children	Iamblichus
mentioned	none	of	the	names	that	Porphyry	listed,	but	spoke	only	of	another	son
named	after	Pythagoras’	father,	Mnesarchus,	who,	in	turn,	took	over	“the
school”	when	Aristaeus	became	too	old.	Iamblichus	confused	matters	still
further	by	mentioning	a	“Theano”	who	was	the	wife	of	Brontinus	of	Croton	and
one	of	the	“most	illustrious	Pythagorean	women.”	Did	Brontinus	die	and
Pythagoras	marry	his	widow,	or	was	it	the	other	way	around?	More	likely	there
were	two	Theanos,	mother	and	daughter.	Diogenes	Laertius	recorded	variously
that	Theano,	the	wife	of	Brontinus,	was	Pythagoras’	pupil,	and	that	Pythagoras’
wife	was	probably	Theano,	daughter	of	Brontinus	of	Croton.

Theano’s	name	was	preserved	on	a	list	thought	to	have	come	through
Aristoxenus	of	seventeen	“most	illustrious	Pythagorean	women”	that	also
included	Mya,	the	wife	of	the	Olympic	wrestler	Milo.	Women	apparently	played
an	active	part	in	the	Pythagorean	“brotherhood.”	Diogenes	Laertius	said	Theano
had	written	books	that	still	existed	in	his	lifetime.	Though	these,	sadly,	were
almost	certainly	some	of	the	“pseudo-Pythagorean”	books	that	appeared	in
antiquity,	Diogenes	Laertius	felt	confident	enough	of	his	source	to	quote
Theano’s	outspoken	advice:	Asked	how	soon	a	woman	becomes	pure	again	after
intercourse,	she	was	supposed	to	have	said,	“The	moment	she	leaves	her	own
husband	she	is	pure;	but	she	is	never	pure	at	all,	after	she	leaves	anyone	else.”



She	advised	that	a	woman	going	to	her	husband	should	“put	off	her	modesty
with	her	clothes”—which	seems	a	great	waste	if	these	were	indeed	the	words	of
Pythagoras’	wife	and	Pythagoras	really	did	entirely	abstain	from	the	pleasures	of
love!

PYTHAGOREAN	LIFE	IN	Croton	was,	it	appears,	a	good	life—with	the	begetting	of
children	who	would	be	new	Pythagoreans	and	could	be	schooled	in	a	new,
wondrous	approach	to	the	world	and	the	universe	.	.	.	with	properly	chosen	food,
whatever	it	included,	appearing	on	Pythagorean	tables	.	.	.	with	men	and	women
engaging	in	fascinating	studies	that	also	improved	their	chances	in	the	next	life.
Within	the	community,	moreover,	word	got	around	of	some	occurrences	that
were	difficult	to	explain	and	that	indicated	their	leader	was	no	ordinary	man.

Unlike	the	ancient	miracles	in	the	Hebrew	Scriptures	and	the	Christian	New
Testament,	the	“wonders”	attributed	to	Pythagoras	were	not	associated	with	any
teaching	or	divine	revelation,	nor	were	they	examples	of	Pythagoras’	helping	or
healing	anyone.	They	were	of	a	more	random	nature,	chance	glimpses	of
existence	on	a	more	divine	level	than	that	experienced	by	the	men	and	women
around	him,	a	level	on	which	the	unity	of	all	being—of	all	things,	places,
animals,	and	gods;	of	past,	present,	and	future—could	easily	be	seen.	Aristotle
told	of	reports	that	Pythagoras	appeared	on	the	same	day	at	the	same	hour	in
Croton	and	in	Metapontum,	and	that	on	one	occasion,	getting	up	from	a	seat	in
Olympia,	he	revealed	his	thigh,	and	everyone	saw	that	it	was	made	of	gold.	In
Etruria	(Tuscany),	a	poisonous	snake	bit	him	and	he	bit	it	back.	The	snake	died;
he	did	not.	Several	witnesses	heard	the	river	Casas	greet	him	by	name,	and	he
correctly	predicted	that	a	white	bear	would	be	sighted	in	Caulonia.	Once,	after
foretelling	serious	strife,	he	disappeared	in	Croton	and	appeared	in	Metapontum.
“According	to	credible	historians,”	wrote	Iamblichus,	and	“ancient	and
trustworthy	writers,”	wrote	Porphyry,	in	each	case	without	naming	them,	birds
and	beasts	listened	to	Pythagoras	and	followed	his	advice—the	same	effect	that
Orpheus	had	on	even	the	most	savage	animals.

Countering	the	miraculous	reports	were	rumors	that	Pythagoras	was	a
charlatan.	Diogenes	Laertius	repeated	a	story	from	Hermippus,	the	third	century
B.C.	native	of	Samos	who	had	said	Mnesarchus	was	a	gem	engraver.	Pythagoras
disappeared	for	a	time	into	a	set	of	subterranean	rooms	while	his	mother
recorded	everything	that	took	place,	marking	the	times	and	dates	on	tablets	that
she	sent	down	to	him.	Eventually	Pythagoras	emerged,	looking	like	a	cadaver,
and	announced	that	he	had	arrived	from	Hades	below.	When	he	told	the
assembled	people	in	detail	all	that	had	happened	to	them	in	his	absence,	they



were	awestruck,	believed	he	was	divine,	wept	and	lamented,	and	“entrusted	to
him	their	wives,”	“who	took	upon	themselves	the	name	of	‘Pythagorean
women.’”	That	same	story	was	told	by	Herodotus	(who	was	skeptical	about	it
himself)	of	a	man	who	had	been	Pythagoras’	slave	when	he	lived	on	Samos,	who
was	supposed	to	have	used	this	strategy	to	create	an	aura	of	magical	power
among	gullible	people	in	Thrace.	In	an	interesting	turnabout,	some	scholars	have
suggested	that	the	miraculous	stories,	as	well	as	the	rumors	of	charlatanism,
were	all	inventions	to	discredit	Pythagoras	in	an	era	when	people	scoffed	at	the
“miraculous”	in	a	way	they	no	longer	would	in	late	antiquity.12



CHAPTER	5

“All	things	known
have	number”
Sixth	Century	B.C.

THE	PYTHAGOREAN	DISCOVERY	that	“all	things	known	have	number—for	without
this,	nothing	could	be	thought	of	or	known”—was	made	in	music.	It	is	well
established,	as	so	few	things	are	about	Pythagoras,	that	the	first	natural	law	ever
formulated	mathematically	was	the	relationship	between	musical	pitch	and	the
length	of	a	vibrating	harp	string,	and	that	it	was	formulated	by	the	earliest
Pythagoreans.	Ancient	scholars	such	as	Plato’s	pupil	Xenocrates	thought	that
Pythagoras	himself,	not	his	followers	or	associates,	made	the	discovery.

Musicians	had	been	tuning	stringed	instruments	for	centuries	by	the	time	of
Pythagoras.	Nearly	everyone	was	aware	that	sometimes	a	lyre	or	harp	made
pleasing	sounds,	and	sometimes	it	did	not.	Those	with	skill	knew	how	to
manufacture	and	tune	an	instrument	so	that	the	result	would	be	pleasing.	As	with
many	other	discoveries,	everyday	use	and	familiarity	long	preceded	any	deeper
understanding.

What	did	“pleasing”	mean?	When	the	ancient	Greeks	thought	of	“harmony,”
were	they	thinking	of	it	in	the	way	later	musicians	and	music	lovers	would?
Lyres,	as	far	as	anyone	is	able	to	know	at	this	distance	in	time,	were	not
strummed	like	a	modern	guitar	or	bowed	like	a	violin.	Whether	notes	were	sung
together	at	the	same	time	is	more	difficult	to	say,	but	music	historians	think	not.
It	was	the	combinations	of	intervals	in	melodies	and	scales—how	notes	sounded
when	they	followed	one	another—that	was	either	pleasing	or	unpleasant.
However,	anyone	who	has	played	an	instrument	on	which	strings	are	plucked	or
struck	knows	that	unless	a	string	is	stopped	to	silence	it,	it	keeps	sounding.
Though	lyre	strings	may	not	have	been	strummed	together	in	a	chord,	more	than
one	pitch	and	often	several	pitches	were	heard	at	the	same	time,	the	more	so	if
there	was	an	echo.	Even	when	notes	are	played	in	succession	and	“stopped,”
human	ears	and	brains	have	a	pitch	memory	that	causes	them	to	recognize
harmony	or	dissonance.	In	truth,	the	ancient	Greeks,	including	Pythagoras,	heard
harmony	both	ways,	between	pitches	sounding	at	the	same	time	and	between
pitches	sounding	in	succession.



The	instrument	Pythagoras	played	was	probably	the	seven-stringed	lyre.	He
tuned	it	with	four	of	the	seven	strings	at	fixed	intervals.	There	were	no	options
about	what	these	intervals	would	be.	The	lowest-and	highest-sounding	of	the
fixed-interval	strings	were	tuned	to	sound	an	octave	apart.	The	middle	string	on
the	lyre	(the	fourth	of	the	seven	strings)	was	tuned	to	sound	a	fourth	above	the
lowest	string,	and	the	one	next	higher	was	tuned	to	sound	a	fifth	above	the
lowest	string.*	The	intervals	of	the	octave,	fourth,	and	fifth	were	considered
concordant,	or	harmonious.	A	Greek	musician	could	adjust	the	other	three
strings	on	the	seven-stringed	lyre	(the	second,	third,	and	sixth	string),	depending
on	the	type	of	scale	desired.

Pressing	a	string	exactly	halfway	between	the	two	ends	produces	a	tone	one
octave	higher	than	the	open,	unpressed	string	plays.	The	ratio	of	those	string
lengths	is	2	to	1,	and	they	always	produce	an	octave.	But	the	octave	is	not
something	a	musician	creates	by	pressing	the	string.	Plucking	an	open	string
without	pressing	it	at	all	causes	it	to	vibrate	as	a	whole,	sounding	the	“ground
note,”	but	various	parts	of	the	string	are	also	vibrating	independently	to	produce
“overtones.”	Even	without	the	string	being	pressed	at	the	halfway	point	to	play
an	octave,	the	octave	is	present	in	the	sound	coming	from	the	open	string.
Pressing	the	string	releases	tones	at	the	octave,	fifth,	fourth,	and	so	on—
depending	on	where	you	press	it—that	were	always	there	in	the	ground	note	but
more	difficult	to	hear.*



Tradition	credits	Pythagoras	with	inventing	the	kanon,	an	instrument	with
one	string,	and	using	it	to	experiment	with	sound.	He	would	have	found	that	the
notes	that	sounded	harmonious	with	the	ground	note	were	produced	by	dividing
the	string	into	equal	parts.	Dividing	it	into	two	equal	parts	produced	a	note	an
octave	higher	than	the	open	string.	Pressed	so	as	to	divide	it	into	three	equal
parts,	the	string	played	a	note	a	fifth	above	that	octave;	in	four	equal	parts,	it
played	a	note	a	fourth	above	that.	The	series	goes	on	to	a	major	third,	then	a
minor	third,	then	smaller	and	smaller	intervals,	but	there	is	no	indication	the
Pythagoreans	took	the	process	any	further	than	the	interval	of	the	fourth.†

Looking	beyond	the	task	of	getting	good,	practical	results	from	a	musical
instrument	to	ask	more	penetrating	questions	about	what	was	going	on,	and
whether	it	could	have	wider	implications,	required	an	unusual	turn	of	mind.
Though	with	hindsight	a	shift	of	focus	from	useful	knowledge	to	recognizing
deeper	principles	can	look	simple,	it	is	not	a	trivial	change.	A	lyre	sounded
pleasant	used	one	way	and	not	another	way	.	.	.	but	why?	Often,	in	writings	about
the	Pythagoreans,	a	clause	added	to	that	question	has	them	asking	whether	there
was	any	meaningful	pattern?	.	.	.	any	orderly	structure?	but	they	were	not
necessarily	looking	for	pattern	or	order	yet,	for	no	precedent	would	have	led
them	to	expect	it.	Nevertheless,	they	were	about	to	discover	it.

When	Pythagoras	and	his	associates	saw	that	certain	ratios	of	string	lengths



When	Pythagoras	and	his	associates	saw	that	certain	ratios	of	string	lengths
always	produced	the	octave,	fifth,	and	fourth,	it	dawned	on	them	that	there	was	a
hidden	pattern	behind	the	beauty	they	heard	in	music—a	pattern	that	they	were
able	to	understand,	but	that	they	had	not	created	or	invented	and	could	not
change.	Surely	this	pattern	must	not	be	an	isolated	instance.	Similar
mathematical	and	geometrical	regularities	must	lie	concealed	behind	all	the
everyday	confusion	and	complexity	of	nature.	There	was	order	to	the	universe,
and	this	order	was	made	of	numbers.	This	was	the	great	Pythagorean	insight,	and
it	was	different	from	all	previous	conceptions	of	nature	and	the	universe.	Though
the	Pythagoreans	hardly	knew	what	to	do	with	the	treasure	they	had	found—and
modern	mathematicians	and	scientists	are	still	learning—it	has	guided	human
thinking	ever	since.	Pythagoras	and	his	followers	had	also	discovered	that	there
apparently	was	a	powerful	link	between	human	sense	perceptions	and	the
numbers	that	pervaded	and	governed	everything.	Nature	followed	a
fundamental,	rational,	beautiful	logic,	and	human	beings	were	tuned	in	to	it,	not
only	on	an	intellectual	level	(they	could	discover	and	understand	it)	but	also	on
the	level	of	the	senses	(they	could	hear	it	in	music).

There	are	other	mathematical	relationships	hidden	beneath	the	experience	of
music	that	neither	Pythagoras	nor	others	of	his	era	had	any	way	of	discovering.
The	ratios	he	found	represent	the	rate	at	which	a	string	vibrates,	but	there	was	no
way	he	could	have	studied	the	vibrations.	However,	after	the	initial	discovery
using	a	kanon	or	a	lyre,	Pythagoras	and/or	his	early	associates	may	well	have
begun	listening	for	octaves,	fourths,	and	fifths	in	other	sounds	and	attempted	to
discover	what	could,	and	what	could	not,	produce	the	intervals.	Perhaps	it	is	the
memory	of	some	of	their	experiments	that	lies	behind	several	puzzling	early
stories	in	which	Pythagoras	made	the	discovery	of	the	relationship	in	ways	that
he	could	not	possibly,	in	fact,	have	made	it.

According	to	one	tale	Pythagoras	was	passing	a	blacksmith’s	shop	and
noticed	that	the	intervals	between	the	pitches	the	hammers	made	as	they	struck
were	a	fourth,	a	fifth,	and	an	octave.	That	part	of	the	story	is	possible,	but	the
next	part	is	not:	The	only	differences	between	the	hammers	were	their	weights,
and	Pythagoras	found	that	those	weights	were	related	in	the	ratios	2:1,	3:2,	and
4:3,	presupposing	that	the	vibration	and	sound	of	hammers	are	directly
proportional	to	their	weight,	which	is	not	the	case.	Pythagoras	then	took	weights
equaling	those	of	the	hammers	and	hung	them	from	strings	of	equal	length.	He
plucked	the	taut	strings	and	heard	the	same	intervals—another	supposed
discovery	based	on	false	premises,	for	the	account	incorrectly	assumes	that	the
frequency	of	vibration	of	a	string	is	proportional	to	the	number	of	units	of	weight
hanging	from	it.	However,	it	is	easy	to	imagine	Pythagoras,	or	his	followers,	or



both,	performing	such	experiments	and	considering,	with	more	understanding
and	skill	than	those	who	later	ignorantly	repeated	the	tales,	what	could	be
learned	from	the	successes	and	failures.	The	manner	in	which	these	stories	came
down	in	history	as	the	way	Pythagoras	made	the	discovery	could	be	an	example
of	how	knowledge	is	sometimes	preserved	while	the	manner	of	its	discovery,
and	true	understanding	of	it,	are	lost.	Such	a	loss	would	be	explained	if,	as	some
have	supposed,	the	more	sophisticated	knowledge	of	Pythagoras	was	largely
forgotten	with	the	breakup	of	Pythagorean	communities	after	his	death.

Aristoxenus	told	a	story	having	to	do	with	another	harmonic	ratio
experiment	that	involved	Hippasus	of	Metapontum,	and	this	experiment	has
particular	significance	because	it	is	one	of	the	reasons	scholars	are	willing	to
attribute	the	discovery	of	the	musical	ratios	to	Pythagoras	and	his	immediate
associates.	Hippasus,	himself	a	contemporary	of	Pythagoras,	made	four	bronze
disks,	all	equal	in	diameter	but	of	different	thicknesses.	The	thickness	of	one
“was	4/3	that	of	the	second,	3/2	that	of	the	third,	and	2/1	that	of	the	fourth.”
Hippasus	suspended	the	disks	to	swing	freely.	Then	he	struck	them,	and	the
disks	produced	consonant	intervals.	This	experiment	is	correct	in	terms	of	the
physical	principles	involved,	for	the	vibration	frequency	of	a	free-swinging	disk
is	directly	proportional	to	its	thickness.	Whoever	designed	and	executed	this
experiment	understood	the	basic	harmonic	ratios,	or	learned	to	understand	them
from	doing	the	experiment,	and	the	way	the	story	was	told	suggests	that	the
musical	ratios	were	already	known	and	Hippasus	made	the	four	disks	to
demonstrate	them.	According	to	Aristoxenus,	the	musician	Glaucus	of	Rhegium,
one	of	Croton’s	neighboring	cities,	played	on	the	disks	of	Hippasus,	and	the
experiment	became	a	musical	instrument.

To	Walter	Burkert,	a	meticulous	twentieth-century	scholar,	the	blacksmith
tales	make	“a	certain	kind	of	sense.”	In	ancient	lore,	the	Idaean	Dactyls	were
wizards	and	the	inventors	of	music	and	blacksmithing.	According	to	Porphyry,
Pythagoras	underwent	the	initiation	set	by	the	priests	of	Morgos,	one	of	the
Idaean	Dactyls.	A	Pythagorean	aphorism	stated	that	the	sound	of	bronze	when
struck	was	the	voice	of	a	daimon—another	connection	between	blacksmithing
and	music	or	magical	sound.	“The	claim	that	Pythagoras	discovered	the	basic
law	of	acoustics	in	a	smithy,”	writes	Burkert,	may	have	been	“a	rationalization—
physically	false—of	the	tradition	that	Pythagoras	knew	the	secret	of	magical
music	which	had	been	discovered	by	the	mythical	blacksmiths.”1

WHEN	THE	PYTHAGOREANS,	with	their	discovery	of	the	mathematical	ratios
underlying	musical	harmony,	caught	a	glimpse	of	the	deep,	mysterious	patterned



structure	of	nature,	the	conviction	became	overwhelming	that	in	numbers	lay
power,	even	possibly	the	power	that	had	created	the	universe.	Numbers	were	the
key	to	vast	knowledge—the	sort	of	knowledge	that	would	raise	one’s	soul	to	a
higher	level	of	immortality,	where	it	would	rejoin	the	divine.

However	revolutionary,	one	of	the	most	significant	insights	in	the	history	of
knowledge	had	to	be	worked	out,	at	the	start,	in	the	context	of	an	ancient
community,	ancient	superstitions,	ancient	religious	perceptions,	without	any	of
the	tools	or	assumptions	of	later	mathematics,	geometry,	or	science,	without	any
scientific	precedent	or	a	“scientific	method.”	How	would	one	begin?	The
Pythagoreans	turned	to	the	world	itself	and	followed	up	on	the	suspicion	that
there	was	something	special	about	the	numbers	1,	2,	3,	and	4	that	appeared	in	the
musical	ratios.	Those	numbers	were	popping	up	in	another	line	of	investigation
they	were	pursuing.

They	had	at	their	fingertips	a	simple	but	productive	way	of	working	with
numbers.	Maybe	at	first	it	was	a	game,	setting	out	pebbles	in	pleasing
arrangements.	Most	of	the	information	about	“pebble	figures”	and	the
connections	with	the	cosmos	and	music	that	the	Pythagoreans	found	in	them
comes	from	Aristotle.	He	knew	about	Pythagorean	ideas	of	“triangular
numbers,”	the	“perfect”	number	10,	and	the	tetractus.

The	dots	that	still	appear	on	dice	and	dominoes	are	a	vestige	of	an	ancient
way	of	representing	natural	numbers,	the	positive	integers	with	which	everyone
normally	counts.	Dots	and	strokes	stood	for	numbers	in	Linear	B,	the	script	the
Mycenaeans	used	for	the	economic	management	of	their	palaces	a	thousand
years	before	Pythagoras,	and	also	in	cuneiform,	an	even	older	script.	Pebble
figures	were	a	related	way	of	visualizing	arithmetic	and	numbers,	but	they	seem
to	have	been	unique	to	the	Pythagoreans.

By	tradition,	Pythagoras	himself	first	recognized	links	between	the	pebble
arrangements	and	the	numbers	he	and	his	colleagues	had	discovered	in	the	ratios
of	musical	harmony.	Two	of	the	most	basic	arrangements	worked	as	follows:
Begin	with	one	pebble,	then	place	three,	then	five,	then	seven,	etc.—all	odd
numbers—in	carpenter’s	angles	or	“gnomons,”	to	form	a	square	arrangement.*

Or,	begin	with	two	pebbles	and	then	set	out	four,	then	six,	then	eight,	etc.—
all	even	numbers—and	the	result	is	a	rectangle.



That	is	easier	to	understand	visually	than	verbally,	one	reason	to	use
pebbles.

Pythagoras	and	his	associates	were	alert	for	hidden	connections.	The	pebble
figures	of	the	square	and	rectangle	dictated	a	division	of	the	world	of	numbers
into	two	categories,	odd	and	even,	and	this	struck	them	as	significant.	It	was	a
link	with	what	they	were	thinking	of	as	the	two	basic	principles	of	the	universe,
“limiting”	and	“limitless.”	“Odd”	they	associated	with	“limiting”;	“even”	with
“limitless.”

Another	way	of	manipulating	the	pebbles	was	to	cut	a	triangle	from	either
the	square	or	the	rectangular	figure.

In	the	line	of	pebbles	that	then	forms	the	diagonal	or	hypotenuse	of	the
triangle,	the	pebbles	are	not	the	same	distances	from	one	another	as	they	are	in
the	other	two	sides,	nor	are	they	touching	one	another.	Having	all	the	pebbles	in
all	three	sides	of	a	triangle	at	equal	distances	from	their	immediate	neighbors,	or
all	touching	one	another,	requires	a	new	figure:	Set	down	one	pebble,	then	two,
then	three,	then	four,	with	all	the	pebbles	touching	their	neighbors.	The	result	is
a	triangle	in	which	all	three	sides	have	the	same	length,	an	equilateral	triangle.
Notice	that	the	four	numbers	in	this	triangle	are	the	same	as	the	numbers	in	the
basic	musical	ratios,	1,	2,	3,	and	4,	and	the	ratios	themselves	are	all	here:
Beginning	at	a	corner,	2:1	(second	line	as	compared	with	first),	then	3:2,	then
4:3.	The	numbers	in	these	ratios	add	up	to	10.	The	Pythagoreans	decided	10	was
the	perfect	number.	They	also	concluded	that	there	was	something	extraordinary
about	this	equilateral	triangle,	which	they	called	the	tetractus,	meaning
“fourness.”	The	tetractus	was,	in	a	nutshell,	the	musicalnumerical	order	of	the
cosmos,	so	significant	that	when	a	Pythagorean	took	an	oath,	he	or	she	swore
“by	him	who	gave	to	our	soul	the	tetractus.”



Most	scholars	think	it	was	after	Pythagoras’	death	that	the	Pythagoreans
found	they	could	construct	a	tetrahedron	(or	pyramid)—a	four-sided	solid—out
of	four	equilateral	triangles,	and	they	probably	knew	this	by	the	time	Philolaus
wrote	the	first	Pythagorean	book	in	the	second	half	of	the	fifth	century.*	The
word	tetractus,	however,	was	in	use	during	Pythagoras’	lifetime.	It	hints	that
there	was	more	“fourness”	to	the	idea	than	the	fact	that	4	was	the	largest	number
in	the	ratios.	The	tetrahedron	or	pyramid	is	a	solid	in	which	each	face	is	a
tetractus,	but	which	also	uses	the	number	4	in	other	manners—4	faces,	4	points.

When	Aristotle,	in	the	fourth	century	B.C.,	was	researching	the	Pythagoreans,
he	found	a	list	of	connections	they	made	between	numbers	and	abstract
concepts.	He	apparently	could	not	discover	what	they	connected	with	the
numbers	6	and	8.

1	Mind
2	Opinion
3	The	number	of	the	whole
4	Justice
5	Marriage
6	?
7	Right	time,	due	season,	or	opportunity
8	?
9	Justice
10	Perfect

It	is	not	difficult	to	understand	how	Mind	might	be	1	and	Opinion	2.	Justice
appears	twice	because	of	an	association	with	squareness.	The	Greeks	did	not
think	of	1	as	a	number.	“Number”	meant	plurality,	more	than	1.	So,	for	them,	the
smallest	number	that	is	the	square	of	any	whole	number	was	4.*	The	first	number
that	is	the	square	of	an	odd	number	is	9,	and	that,	too,	they	associated	with



justice.	The	idea	that	“square”	means	an	evened	score—with	all	need	for
retaliation	at	an	end—still	shows	up	in	the	colloquial	phrase	“That	makes	us
square.”	Marriage	(5)	was	the	sum	of	the	first	odd	and	even	numbers	(2	and	3).
The	link	between	7	and	“right	time”	or	“due	season”	reflected	wider	Greek
thought.	Life	happened	in	multiples	of	7.	A	child	could	be	born	after	7	months	in
the	womb,	cut	teeth	7	months	later,	reach	puberty	at	14,	and	(if	a	boy)	grow	a
beard	at	21.

The	Pythagoreans	followed	one	line	of	thought	that	seems	particularly	odd
today,	accustomed	as	most	of	us	are	to	thinking	of	squares	and	cubes	of	numbers
but	not	of	other	geometric	shapes	possibly	connected	with	them	in	a	similar
manner.	The	“square”	of	4	was	16,	but	the	“triangle”	of	4	was	10,	the	perfect
number.	Both	ideas	were	equally	picturable	with	pebbles.	Stacking	the	pebbles
so	as	to	discover	that	the	“cube”	of	4	was	64,	you	might	just	as	easily	pile	them
up	another	way	so	that	the	“pyramid”	of	4	was	20.	Montessori	teaching	exploits
the	delight	of	playing	games	like	this	with	little	objects	like	pebbles—in	the	case
of	Montessori,	beads.

Having	come	to	the	conclusion	not	only	that	numbers,	but	the	specific
numbers	1,	2,	3,	and	4	and	the	ratios	between	them	were	the	primordial
organizing	principle	of	the	universe,	Pythagorean	thinking	moved	in	other
directions,	some	of	which	seem	strange	and	primitive,	but	it	is	not	surprising	that
they	overestimated	the	simplicity	of	the	rationality	they	had	glimpsed	and	were
too	expectant	of	immediate	applications	and	results.	They	were	not	unlike	the
earliest	followers	of	Jesus,	coming	away	from	what	was	for	them	a	transforming
experience	and	trying	to	apply	it	to	the	everyday	world,	thinking	all	would	be
resolved	soon.	The	Pythagoreans	had	discovered	a	new	road	to	“truth.”	Great
thinkers	thought	about	truth	and	proposed	answers.	Only	a	shaman—and	many
regarded	Pythagoras	as	what	we	today	would	call	a	shaman—was	sure	he	had
the	answer.	In	fact,	Pythagoras	and	his	followers	did,	but	they	traveled	their	new
road	weighted	down	with	ancient	baggage.	Still	in	the	age	of	oracles,	divination,
and	mystic	utterances,	with	its	preconceptions	about	the	universe	and	nature,
their	naive	conception	of	the	world	carried	over	into	a	naive	conception	of	the
power	of	numbers.



THE	HALCYON	DAYS	in	Croton	lasted	thirty	years.	Iamblichus’	biography	included
long	lists	of	names,	which	he	probably	got	from	Aristoxenus,	of	Pythagoras’	first
followers,	who	sat	at	his	feet,	heard	his	teaching,	argued	points	and	worked	out
problems	with	him,	played	with	the	pebbles,	and	experimented	with	the	kanon
and	with	hanging	disks.	Was	the	young	physician	“Alcmaeon”	really	one	of
them?	Was	there	actually	a	“Brontinus”	who	was	husband	and/or	father	of
Theano?	Were	“Leo”	and	“Bathyllus”	real	people?	And	what	of	the
“Pythagorean	women,”	about	whom	nothing	is	known	but	their	names	on	these
lists?	Frustratingly,	there	is	no	specific	surviving	information	about	how	the	new
coinage	affected	the	economy	or,	except	the	story	of	Milo’s	defeat	of	Sibaris,
about	Pythagorean	leadership	in	Croton	and	the	surrounding	territory,	what
offices	the	Pythagoreans	held,	or	exactly	in	what	capacity	they	wielded	their
power—only	that	they	did	wield	it	and	that	the	results	were	by	most	accounts
beneficial	to	the	region.	What	is	clear	is	that	in	about	500	B.C.,	three	decades
after	Pythagoras	arrived	in	Croton,	hostility	among	the	populace	and	perhaps	a
coup	within	the	ranks	of	his	followers	brought	it	all	to	an	end.	The	information	is
confused	and	contradictory,	with	common	themes	being	others’	suspicion	that
Pythagoras	and	his	followers	were	either	becoming	too	powerful	politically	or
aspiring	to	too	much	power—and,	oddly,	an	unusual	respect	for	beans.

According	to	Diogenes	Laertius,	Pythagoras	was	visiting	with	friends	in
Milo’s	home	when	someone	deliberately	set	fire	to	the	house.	The	arsonists	were
either	Crotonians	who	feared	that	Pythagoras	might	“aspire	to	the	tyranny”	or
envious,	disgruntled	people	who	thought	they	should	have	been	included	in	this
gathering	but	had	not	been	deemed	“worthy	of	admission.”	Pythagoras	escaped
but	was	captured	and	killed	when	he	avoided	crossing	a	bean	field	and	took	a
longer	way	around.	He	must	have	decided,	Diogenes	Laertius	said,	that	death
was	preferable	to	trampling	on	beans	or	speaking	with	his	pursuers.	About	forty
of	his	companions	died	as	well.

Diogenes	Laertius	was	interested	in	conflicting	accounts,	so	he	also	reported
a	story	he	got	from	Hermippus,	portraying	Pythagoras	and	his	“usual
companions”	in	a	militaristic	light.	They	had	joined	the	Agrigentine	army	to
fight	the	army	of	Syracuse.	The	Syracusans	put	them	to	flight	and	captured	and
killed	Pythagoras	as	he	was	making	a	detour	around	a	bean	field.	Being	less
squeamish	about	trampling	on	beans	did	not	help	his	companions.	About	thirty-
five	were	caught	and	burned	at	the	stake	in	Tarentum,	accused	of	trying	to	set	up
a	rival	government	in	opposition	to	the	prevailing	magistrates.

Diogenes	Laertius	showed	he	had	a	rather	macabre	sense	of	humor	by
casting	part	of	this	story	into	verse	in	another	of	his	“jesting	epigrams.”



Alas!	alas!	why	did	Pythagoras	hold
Beans	in	such	wondrous	honor?	Why,	besides,
Did	he	thus	die	among	his	choice	companions?
Here	was	a	field	of	beans;	and	so	the	sage,
Died	in	the	common	road	of	Agrigentum,
Rather	than	trample	down	his	favorite	beans.

Two	other	endings	to	the	story	came	through	Diogenes	Laertius	from	the
trustworthy	Dicaearchus	and	Heracleides	Ponticus;	in	these,	Pythagoras	escaped
his	pursuers	but	died	soon	thereafter	in	Metapontum	of	self-imposed	starvation.*

Porphyry	gave	a	more	detailed	description	of	what	supposedly	happened,
based	on	Aristoxenus,	naming	names	and	filling	in	the	gaps	in	the	other	stories,
and	Iamblichus	had	some	of	the	same	specifics.	According	to	this	fuller	account,
the	huge	success	of	Pythagoras	and	his	associates,	and	particularly	their	role	in
the	administration	and	reform	of	the	cities,	aroused	envy,	most	notably	and
ominously	from	one	Cylon.	He	was	a	wealthy	community	leader	of	impeccable
breeding,	but	also	of	a	“severe,	violent	and	tyrannical	disposition,”	and	he
controlled	a	large	group	of	loyal	supporters.	He	had	a	high	opinion	of	himself,
“esteemed	himself	worthy	of	whatever	was	best,”	and	assumed	he	would	be
welcomed	to	the	Pythagorean	fellowship.	When	Cylon	approached	Pythagoras,
“extolled	himself,”	and	tried	to	converse,	Pythagoras	peremptorily	“sent	him
about	his	business.”	Pythagoras,	Porphyry	pointed	out,	“was	accustomed	to	read
in	the	nature	and	manners	of	human	bodies	the	disposition	of	the	man.”	Cylon
did	not	take	the	rebuff	gracefully.	He	assembled	his	cronies	and	instigated	a
conspiracy	against	Pythagoras	and	his	followers.	According	to	Iamblichus	it
took	some	time	for	Cylon	to	bring	his	plans	to	fruition	because	of	the
Pythagoreans’	power	and	the	trust	placed	in	them	by	the	citizens	of	the	various
cities.	Accounts	more	sympathetic	to	Cylon	had	him	as	the	leader	of	a	group	that
opposed	the	oppressive	ultra-conservatism	of	the	Pythagoreans.

Iamblichus	suggested	that	Hippasus—who	invented	the	demonstration	of	the
musical	ratios	using	the	disks	of	different	thicknesses—may	have	played	a
subversive	role.	Before	Cylon’s	attack,	Hippasus	was,	according	to	Iamblichus,
one	of	a	faction,	among	the	insiders,	who	disagreed	with	Pythagoras	and	the
more	orthodox	members	of	the	school.	He	urged	Pythagoreans	who	were	playing
prominent	roles	in	governing	the	cities	to	adopt	more	democratic	policies.	He
may	have	attempted	to	stir	up	popular	feeling	against	Pythagoras’	leadership,
playing	into	Cylon’s	hands.

W.	K.	C.	Guthrie	described,	with	good	understanding	of	human	nature,	the



W.	K.	C.	Guthrie	described,	with	good	understanding	of	human	nature,	the
complicated	political	situation	that	probably	contributed	to	the	death	or	exile	of
Pythagoras:

This	combination	of	forces	seems	to	have	been	due	on	the	one
hand	to	popular	discontent	with	the	concentration	of	power	in	the
hands	of	a	few,	coupled	with	the	ordinary	man’s	dislike	of	what
he	considers	mumbo-jumbo,	and	on	the	other	to	the	native
aristocracy’s	suspicion	of	the	Pythagorean	coteries,	whose
assumption	of	superiority	and	esoteric	knowledge	must	at	times
have	been	hard	to	bear.2

Porphyry	took	the	longest	and	most	dramatic	version	of	the	story	from
Dicaearchus.	Pythagoras	was	with	his	friends	in	Milo’s	house	when	Cylon’s	men
set	it	afire.	Pythagoras’	most	devoted	followers	threw	themselves	into	the	flames
to	make	a	bridge	with	their	bodies	for	the	elderly	sage	to	cross	and	escape.	He
and	a	remnant	of	survivors	then	tried	to	reach	the	city.	Fleeing	along	the	road,
the	others	were	gradually	picked	off	by	their	pursuers,	but	Pythagoras,	protected
by	them	as	much	as	possible	during	their	flight,	managed	eventually	to	make	his
way	to	the	harbor	of	Caulonia	and	from	there	to	Locri.	The	Locrians	refused	him
sanctuary.	Perhaps	they	sensed	that	the	days	of	Pythagorean	preeminence	had
come	to	an	end	and	feared	retribution	from	Cylon	if	they	sheltered	him.	Or
perhaps	they	feared	Pythagoras	himself,	for,	as	the	story	goes,	their	message	to
him	as	they	turned	him	away	was	that	they	admired	his	wisdom	but	liked	their
present	condition	and	way	of	life	and	did	not	wish	to	change.*	In	any	case,	the
story	has	it	that	they	sent	some	old	men	to	intercept	him	before	he	could	reach
their	gates	and	tell	him	that	the	Locrians	would	give	him	food	and	supplies	but
he	must	“go	to	some	other	place.”	Pythagoras	sailed	to	Tarentum,	then	back	to
Croton.	The	Crotonians	also	sent	him	away.	Everywhere,	as	Porphyry	reported
Dicaearchus’	words,	“mobs	arose	against	him,	of	which	even	now	the
inhabitants	make	mention,	calling	them	the	Pythagorean	riots.”	In	Dicaearchus’
account,	Pythagoras	eventually	found	asylum	in	the	temple	of	the	Muses	in
Metapontum,	where	he	starved	himself	to	death,	grieving	for	the	friends	who	had
perished	trying	to	save	him.

The	people	of	Metapontum	prefer	another	ending.	According	to	the	tradition
in	that	city,	after	Pythagoras	arrived	as	a	refugee	from	Croton,	he	settled	down
and	established	a	school.	After	his	death,	his	house	and	school	were	incorporated
into	a	temple	of	Hera.	Fifteen	columns	and	sections	of	pavement	from	that
temple	still	remain	today	in	Metapontum,	called	the	Palatine	Tables,	because



knights	(paladins)	in	the	Middle	Ages	assembled	there	before	setting	off	on	the
Crusades.	In	the	first	century	B.C.,	when	Cicero	visited	Metapontum,	people
could	still	identify	the	house	where	they	believed	Pythagoras	had	lived.	Cicero
wrote	about	how	moved	he	was	when	he	visited	it.

Porphyry	lamented	that	most	of	what	Pythagoras	taught	died	with	him	and
his	closest	followers.	“With	them	also	died	their	knowledge,”	he	wrote,	“which
till	then	they	had	kept	secret	except	for	a	few	obscure	things	which	were
commonly	repeated	by	those	who	did	not	understand	them.”	Iamblichus	wrote
that	the	cities	hardly	mourned	Pythagoras	at	all	or	took	much	notice	of	what	had
happened,	though	in	truth	they	had	lost	“those	men	most	qualified	to	govern.”
“Then	science	died	in	the	breasts	of	its	possessors,	having	by	them	been
preserved	as	something	mystic	and	incommunicable.”



CHAPTER	6

“The	famous	figure
of	Pythagoras”
Sixth	Century	B.C.

IN	THE	FIRST	OR	EARLY	SECOND	century	A.D.,	Plutarch,	the	author	of	the	famous
Parallel	Lives,	and	his	team	of	researchers	tried	to	find	the	earliest	reference
connecting	Pythagoras	with	the	“Pythagorean	theorem.”*	They	came	upon	a
story	in	the	writing	of	a	man	named	Apollodorus,	who	probably	lived	in	the
century	of	Plato	and	Aristotle,	that	told	of	Pythagoras	sacrificing	an	ox	to
celebrate	the	discovery	of	“the	famous	figure	of	Pythagoras.”†	Plutarch
concluded	that	this	“famous	figure”	must	have	been	the	Pythagorean	triangle.
Unfortunately	Apollodorus	was	no	more	specific	than	those	words	“the	famous
figure	of	Pythagoras”—which	probably	indicates	that	it	was	so	famous	he	had	no
need	to	be.

A	modern	author	could	also	write	“the	famous	figure	of	Pythagoras”	and	be
as	certain	as	Apollodorus	apparently	was	that	no	reader	would	think	of	anything
but	the	“Pythagorean	triangle.”	Even	nonmathematicians	can	often	recall	the
“Pythagorean	theorem”	from	memory:	the	square	on	the	hypotenuse	of	a	right
triangle	is	equal	to	the	sum	of	the	squares	on	the	other	two	sides.	For	millennia,
anyone	who	had	reason	to	know	anything	about	this	theorem	thought	Pythagoras
had	discovered	it.

For	many	who	learned	the	formula	in	school	and	always	thought	of	it	only	in
terms	of	squaring	numbers,	rather	than	involving	actual	square	shapes,	it	came	as



an	almost	chilling	revelation	when	Jacob	Bronowski	in	his	television	series	The
Ascent	of	Man	attached	a	square	to	each	side	of	a	right	triangle	and	showed	what
the	equation	really	means.	The	space	enclosed	in	the	square	“on	the	hypotenuse”
is	exactly	the	same	amount	of	space	as	is	enclosed	in	the	other	two	squares
combined.	The	whole	matter	suddenly	took	on	a	decidedly	Pythagorean	aura.
Clearly	this	was	something	that	might	indeed	have	been	discovered	and	is	true	in
a	way	that	does	not	require	a	trained	mathematician	or	even	a	mathematical
mind	to	recognize.	In	fact,	using	numbers	is	only	one	of	several	ways	of
discovering	it	and	proving	it	is	true.

Bronowski	pointed	out	that	right	angles	are	part	of	the	most	primitive,
primordial	experience	of	the	world:

There	are	two	experiences	on	which	our	visual	world	is	based:
that	gravity	is	vertical,	and	that	the	horizon	stands	at	right	angles
to	it.	And	it	is	that	conjunction,	those	cross-wires	in	the	visual
field,	which	fixes	the	nature	of	the	right	angle.1

Bronowski	did	not	mean	that	experiencing	the	world	in	this	way	necessarily
leads	immediately,	or	ever,	to	the	discovery	of	the	Pythagorean	theorem.	Indeed,
all	over	the	ancient	world,	long	before	Pythagoras,	right	angles	were	used	in
building	and	surveying,	and	right	triangles	appeared	decoratively.*	Without
drawing	tools,	a	draftsman	can	produce	right	triangles,	and	a	skilled	draftsman
can	produce	right	triangles	that	no	human	eye	can	see	are	not	absolutely	precise
—this	without	knowledge	of	the	Pythagorean	theorem.	Just	as	tuning	a	harp	is	an
“ear	thing”—and	was,	long	before	anyone	understood	the	ratios	of	musical
harmony—the	use	of	right	triangles	in	design	was	an	“eye	thing.”	Such
judgments	of	harmony,	figures,	and	lines	are	intuitive	for	human	beings,	and	the
mathematical	relationships	that	lie	hidden	in	nature	and	the	structure	of	the
universe	often	manifest	themselves	in	the	everyday	world	in	useful	ways	long
before	anyone	thinks	of	looking	for	explanations	or	deep	relationships.

Yet	at	certain	times	and	places	in	history	and	prehistory—for	reasons	about
which	it	is	only	possible	to	speculate—circumstances	have	been	right	to	call
forth	a	longing	to	look	beyond	the	surface.	Among	the	Pythagoreans	there	was	a
strong	and	unusual	motivation.	Investigation	like	this	was	the	road	by	which	one
could	escape	the	tedious	round	of	reincarnations	and	rejoin	the	divine	level	of
existence.	One	cannot	summarily	dismiss	the	tradition	that	they	discovered	the
theorem,	though,	contrary	to	popular	belief	for	centuries,	they	were	definitely
not	the	first	to	do	so.



No	one	knows	how	or	when	the	“Pythagorean	theorem”	was	first
discovered,	but	it	happened	long	before	Pythagoras.	Archaeologists	have	found
the	theorem	on	tablets	in	Mesopotamia	dating	from	the	first	half	of	the	second
millennium	B.C.,	a	thousand	years	before	his	lifetime.	It	was	already	so	well
known	then	that	it	was	being	taught	in	scribal	schools.	In	other	regions,	evidence
of	early	knowledge	of	the	theorem	is	less	conclusive	but	still	interesting.
Egyptian	builders	knew	how	to	create	square	corners	with	an	astounding	and
mysterious	degree	of	precision,	perhaps	by	using	a	technique	that	earned	them
the	nickname	“rope	pullers”	among	their	Greek	contemporaries.	There	is	a	hint
about	what	that	meant,	perhaps,	from	circa	1400	B.C.	in	a	wall	painting	in	a	tomb
at	Thebes,	where	Porphyry’s	story	had	Pythagoras	spending	most	of	his	time
while	in	Egypt.	The	painting	shows	men	measuring	a	field	with	what	looks	like	a
rope	with	knots	or	marks	at	regular	intervals.2	Possibly	they	were	using	the	rope
to	create	right	angles,	taking	a	length	of	rope	12	yards	long,	making	it	into	a
loop,	and	marking	it	off	with	three	notches	or	knots	so	as	to	divide	it	into	lengths
3,	4,	and	5	yards	long.	Three,	four,	and	five	are	a	“triple”	of	whole-number	unit
measurements	that	create	a	right	triangle,	and	holding	the	loop	at	the	three	marks
and	pulling	it	tight	would	have	given	them	one.	The	knots	or	marks	in	the
Thebes	wall	decoration	are	not	clearly	spaced	at	those	intervals,	but	that	could	be
because	the	artist	was	no	surveyor.

1400	B.C.	wall	painting	at	Thebes	depicting	men	measuring	a	field

The	Egyptians	left	no	instructions	about	“rope	puller”	techniques,	and
knowledge	of	the	3–4–5	triplet	is	no	clear	indication	that	they	knew	the	theorem
that	made	deeper	sense	of	it.	They	had	another	method	of	getting	right	angles
that	involved	no	ropes	at	all.	The	groma	was	a	wooden	cross	suspended	from
above	so	that	it	pivoted	at	the	center.	A	plumb	bob	was	hung	from	the	end	of
each	of	the	four	arms;	a	surveyor	or	builder	sighted	along	each	pair	of	plumb
bob	cords	in	turn,	then	turned	the	entire	device	ninety	degrees	and	repeated	the



sighting,	and	finally	adjusted	one	of	the	cords	to	make	up	half	of	the	difference.
The	result	was	a	precise	right	angle.

In	India,	right	triangles	appeared	in	the	designs	on	Hindu	sacrificial	altars
dating	from	as	early	as	1000	B.C.3	A	collection	of	Hindu	manuals	called	the
Sulba-Sûtras	(“Rules	of	the	Cord”),	dating	from	between	500	and	200	B.C.,	told
how	to	construct	these	altars	and	how	to	enlarge	them	while	retaining	the	same
proportions.	In	times	of	trouble,	enlarging	the	altar	was	a	way	of	seeking	surer
protection	from	the	god	or	gods,	and	getting	the	right	response	depended	on
keeping	the	exact	proportions.	Builders	attached	cords	to	pegs	set	in	the	ground,
as	bricklayers	do	today,	hence	“rules	of	the	cord.”	The	Pythagorean	theorem
does	not	appear	in	the	manuals,	but	the	writers	seem	to	have	been	aware	of	it.
Knowledge	originating	in	Greece	in	the	sixth	century	B.C.	could	possibly	have
reached	India,	for	instance	with	Alexander	the	Great’s	armies	in	about	327	B.C.	It
is	not	too	far-fetched	to	speculate	that	it	did.	The	Cynic	philosopher	Onesicritus
traveled	with	Alexander,	and	in	his	records	he	mentioned	being	questioned	by	an
Indian	wise	man	about	Greek	learning	and	doctrine.	One	of	the	matters	they
discussed	was	the	Pythagorean	avoidance	of	eating	meat.4	By	the	time
Onesicritus	had	that	discussion,	the	Pythagorean	theorem	was	well	known	in	the
Greek	world	and	almost	certainly	known	to	him.	However,	there	is	more	to	the
Indian	case.	Though	the	written	manuals	date	from	after	Pythagoras’	lifetime,
records	exist	of	similar	altars,	and	of	their	proportional	enlargement,	from
several	centuries	earlier.	No	instruction	manuals	survive	from	that	time	and	it	is
plausible	that	the	writers	of	the	later	manuals	were	applying	new	understanding
to	an	ancient	art.	One	only	need	witness	the	astounding	facility	with	which	the
humblest,	most	isolated,	illiterate	Indian	woman	today	is	able	to	create	highly
elaborate	symmetrical	geometric	designs	with	painted	powders	on	her	doorstep,
referring	to	a	small	pattern	held	down	by	a	stone	nearby,	to	question	whether	an
understanding	of	mathematical	geometry	was	necessary	to	create	an	intricate
design	and	enlarge	it	while	retaining	the	original	proportions.

In	Mesopotamia,	however,	the	evidence	is	irrefutable	that	the	theorem	was
known	and	understood	in	the	early	second	millennium	B.C.5	We	have	not	the
vaguest	hint	about	who	discovered	it	or	how,	or	how	useful	it	was.	School
lessons	on	tablets	measured	gates	and	grain	piles,	and	one	grain	pile	was	so
amazingly	large	that	the	lesson	problem	was	clearly	set	out	only	as	an	exercise,
not	with	a	real	pile	in	mind—though	probably	with	the	goal	of	equipping	pupils
to	put	the	same	number	skills	to	work	in	real-life,	practical	situations.6

The	twentieth-century	discoveries	about	the	theorem’s	Mesopotamian
origins	began	in	1916	when	Ernst	Weidner	studied	a	Mesopotamian	school



tablet	labeled	VAT	6598,	dating	from	the	Old	Babylonian	period	in	the	early
second	millennium	B.C.	The	two	final	problems	that	he	could	read	on	the	tablet,
part	of	which	was	missing,	required	calculating	the	diagonal	of	a	rectangle	and
showed	methods	for	doing	that.	These	did	not	include	the	Pythagorean	theorem,
but	Weidner	assessed	the	accuracy	of	the	methods	and	compared	them	with	the
theorem,	alerting	archaeologists	and	mathematicians	to	the	possibility	that	it	was
known	more	than	a	thousand	years	before	Pythagoras.

The	text	tablet	labeled	Plimpton	322

In	1945,	a	text	that	archaeologists	have	labeled	Plimpton	322	came	to	light,
listing	fifteen	pairs	of	what	would	later	be	known	as	Pythagorean	triples—three
whole	numbers	that,	when	used	as	the	measurements	of	the	sides	of	a	triangle,
produce	a	right	triangle.7	The	smallest	Pythagorean	triples	are	3–4–5	and	5–12–
13.*	The	list	took	the	ancient	scribes	into	large	numbers.	While	the	Plimpton
322	list	was	not	airtight	evidence	that	its	makers	knew	the	Pythagorean	theorem,
it	was	further	evidence	of	the	possibility.

In	the	1950s,	the	Iraqi	Department	of	Antiquities	excavated	a	site	known	as
Tell	Harmal	near	the	location	of	ancient	Babylon†—a	town	called	Shaduppum



that	had	been	an	administrative	complex	under	kings	ruling	just	before	the	great
lawgiver	Hammurabi,	during	the	First	Babylonian	Dynasty	(1894–1595	B.C.).*
Modern	Baghdad	has	sprawled	out	so	far	that	the	area	where	Tell	Harmal	is
situated	is	now	one	of	its	suburbs,	but	during	the	First	Babylonian	Dynasty,
Shaduppum	was	a	heavily	fortified	independent	community.	The	Iraqi
archaeologists	uncovered	massive	walls	buttressed	with	towers,	a	temple	with
life-sized	terra-cotta	lions	at	its	entrance,	captured	in	mid-roar,	and,	across	the
street	from	the	temple,	buildings	that	had	been	the	primary	administrative	center
and	had	included	a	school	for	scribes.	The	cuneiform	documents	buried	among
its	rubble	were	not	only	administrative	texts,	letters,	and	a	law	code,	but	also
long	lists	of	geographical,	zoological,	and	botanical	terms,	and	mathematical
material.	Many	of	these	tablets	were,	like	Weidner’s	VAT	6598,	school	texts,
used	and	copied	by	pupils	with	differing	degrees	of	skill	and	sloppiness	at	the
scribal	school.	They	amounted	to	a	cross	section	of	Babylonian	knowledge	at	its
height,	four	thousand	years	ago.	One	tablet	revealed	that	the	scribes	of	that	era
understood	right	triangles,	square	roots,	and	cube	roots,	and	were	using	them	in	a
manner	that	implied	familiarity	with	the	Pythagorean	theorem.8

In	the	1980s,	Christopher	Walker	of	the	British	Museum	made	an
extraordinary	find,	not	at	an	archaeological	dig	but	in	the	museum’s	vast,
disorganized	collection	of	tablet	fragments.	A	piece	labeled	BM96957	turned	out
to	be	a	“direct	join”	to	the	tablet	Weidner	had	written	about	in	1916.	The	two
pieces	together	present	three	problems	and	three	methods	of	solving	them.	The
third	method,	found	only	on	Walker’s	BM96957,	is	the	Pythagorean	theorem.
(See	the	box	for	a	near	translation	of	a	part	of	the	text.)

Was	the	mathematical	knowledge	that	scribal	students	were	mastering	in	the
first	half	of	the	second	millennium	B.C.	still	available	in	Babylon	in	the	sixth
century	B.C.,	in	the	neo-Babylonian	era,	when	Iamblichus	thought	Pythagoras
visited	Babylon?	We	tend	to	assume	that	knowledge	once	discovered	stays
discovered,	but	much	can	happen	to	knowledge	in	a	thousand	years,	particularly
in	as	politically	unstable	a	region	as	this.	For	example,	sophisticated	building
techniques	used	routinely	by	the	Romans	were	unknown	to	even	the	most
brilliant	architects	and	builders	in	the	Middle	Ages	and	early	Renaissance,	and
were	being	discovered	as	though	for	the	first	time	as	late	as	the	fifteenth
century.10	Knowledge	of	a	thirty-geared,	hand-operated	mechanical	computer
known	as	the	Antikythera	Mechanism	used	by	the	Hellenistic	Greeks	in	150–100
B.C.,	and	the	technological	understanding	necessary	to	manufacture	and	use	it,
were	likewise	lost,	and	a	thousand	years	passed	before	anyone	even	thought	of
the	possibility	of	such	an	invention	again.11*	The	tablets	at	Shaduppum



disappeared	in	the	rubble	before	1600	B.C.	and	were,	in	the	time	of	Pythagoras,
lying	right	where	archaeologists	would	find	them	in	the	twentieth	century	A.D.

The	Babylonians	used	the	sexigesimal	place	value	system,	not	the
decimal—that	is,	their	number	system	was	based	on	sixes,	not	tens.
(The	modern	system	of	counting	hours,	minutes,	and	seconds	is	derived
from	it.)	In	the	drawing	and	text	below,	the	portions	in	brackets	are	a
conjectural	reconstruction	by	Eleanor	Robson,	based	on	the	contents
of	the	rest	of	the	tablet.	The	italicized	numbers	in	brackets	give	the
equivalents	in	the	decimal	system.	The	drawing	is	not	to	scale,	nor	was
it	on	the	tablet.	The	length	of	the	diagonal	is	an	irrational	number.	It	is
41	plus	an	infinite	string	of	numbers	after	the	decimal	point.	The
author	of	the	tablet	satisfied	himself	with	an	imprecise	measurement	of
the	diagonal.	The	measurement	is	of	a	rectangular	gate,	lying	on	its
side,	so	that	“height”	refers	to	the	longest	side.9

[What	is	the	height?	You:]	square	[41.	.	.	.	.	.	,	the	diagonal].	28	20
(1700)	is	the	squared	number.	Square	[10,	the	breadth].	You	will	see
1	40	(100)

[Take]	1	40	from	28	20	(1700	minus	100)	[26	40	(1600)	is	the
remainder.]

What	is	the	square	root?	The	square	root	is	40.

This	solution	definitely	used	the	theorem	we	now	call	Pythagorean.	In
modern	terminology:	The	breadth	of	the	gate	is	10,	which	squared	is	100.
The	height	of	the	gate	is	40,	which	squared	is	1600.	The	length	of	the
diagonal	of	the	gate	is	a	number	close	to	41.	The	square	of	that	number
is	1700.	1600	+	100	=	1700

There	are	very	few	school	mathematics	tablets	dating	from	1600–1350	B.C.,
and	another	evidential	gap	1100–800	B.C.	The	historian	and	Assyriologist



Eleanor	Robson,	who	has	given	these	issues	more	thought	than	perhaps	any
other	modern	scholar,	listed	several	possible	explanations,	but	concluded	that
“the	collapse	of	the	Old	Babylonian	state	in	1600	B.C.E.	entailed	a	massive
rupture	of	all	sorts	of	scribal	culture.	Much	of	Sumerian	literature	was	lost	from
the	stream	of	tradition,	it	seems,	and	most	of	Old	Babylonian	mathematics
too.”12†

Although	Robson	believes	that	the	later	Babylonians	were	probably	ignorant
of	the	achievements	of	Old	Babylonian	mathematics,	it	is	likely	that	useful
fallout	from	that	lost	knowledge,	such	as	a	triple	that	was	handy	for	finding	right
angles,	would	have	remained	in	use	in	Mesopotamia	and	elsewhere	for	centuries,
without	those	who	utilized	it	remembering	the	hidden	relationship	among	the
numbers.13	And	even	if	Pythagoras	never	visited	Babylon,	Greece	was	no
wasteland	when	it	came	to	building	and	surveying:	Eupalos’	astounding	water
tunnel	on	Samos	was	built	in	Pythagoras’	century,	as	were	many	magnificent
Greek	temples.	Though	Pythagoras	and	his	followers	were	not	the	first	to	know
the	theorem,	their	discovery	might	have	been	an	independent	discovery,	or
linked	only	by	some	surviving	vestige	of	the	more	ancient,	lost	knowledge.

Pythagoreans	in	possession	of	the	triple	3–4–5,	wherever	they	learned	it,	and
recognizing	its	usefulness,	would	not	have	let	matters	rest	there.	And	if	they	set
their	minds	to	looking	for	a	meaningful	connection	among	the	three	numbers,	it
would	arguably	not	have	taken	long	to	find	the	theorem.	They	could	not	have
done	it	with	pebbles,	which	they	used	as	counters	rather	than	as	units	to	measure
distances,	but	the	same	visualization	that	made	pebbles	interesting	would	soon
have	arrived	at	something	like	the	diagram	above,	where	squaring	the	numbers
in	the	triple	reveals	the	hidden	relationship.

Think	of	land:	Pythagoras	had,	after	all,	grown	up	in	a	Geomoroi
family	on	Samos,	and	the	Geomoroi	got	their	name	from	the	way	they
laid	out	their	land.	Take	9	plots	of	land,	add	16	more,	and	you	have	25
plots,	as	you	can	see	if	you	draw	them.



If	the	Pythagoreans	found	this	relationship,	having	already	discovered	the
harmonic	ratios,	they	must	have	felt	as	though	lightning	had	struck	twice,	for
here	was	another	stunning	example	of	the	hidden	numerical	rationality	of	the
universe.	Believing	so	strongly	in	a	unity	of	all	things,	they	would	have	been
quick	to	jump	to	the	correct	conclusion	that	this	same	pattern	of	hidden
connections	had	to	apply	to	all	right	triangles—perhaps	even	to	the	incorrect
conclusion	that	it	had	to	be	true	of	all	triangles.

The	second	part	of	the	tradition	that	has	Pythagoras	and	his	early	followers
discovering	the	theorem	was	that	afterward	a	sword	of	Damocles	hung	over	their
heads.	The	universe	had	a	cruel	surprise	in	store	for	them,
“incommensurability.”	Most	right	triangles	have	no	whole-number	triplet	like	3–
4–5.	For	example,	according	to	the	theorem,	a	right	triangle	with	sides
measuring	3	inches	and	3	inches,	each	of	which	squared	is	9,	must	have	a	third
side—a	hypotenuse—the	length	of	which	squared	is	18.

However,	it	is	no	simple	matter	to	find	the	square	root	of	18	and	the	length	of
that	hypotenuse,	for	the	square	root	of	18	does	not	exist	among	whole	numbers
or	fractions.	An	isosceles	triangle	like	this	one	was	a	nightmare	for	a	community
of	scholars	who	believed	in	a	rational	universe	based	beautifully	and	neatly	on
numbers.	They	could	see	that	it	did	indeed	exist	and	was	a	right	triangle.	It	was



numbers.	They	could	see	that	it	did	indeed	exist	and	was	a	right	triangle.	It	was
not	something	hypothetical	hanging	fuzzily	out	in	conceptual	space.	It	was	the
triangle	they	got	when	they	drew	a	diagonal	from	corner	to	corner	of	a	square.
But	no	subdivision	of	the	length	of	the	sides	(neither	inch,	nor	centimeter,	nor
mile,	nor	any	fraction	thereof)	divided	evenly	into	the	length	of	the	diagonal.
More	generally,	though	it	might	seem	that	for	any	two	lengths	you	might	try	to
measure	there	would	be	some	unit	that	would	divide	into	both	of	them	and	come
out	even	with	no	remainder—maybe	not	the	inch	or	centimeter	or	any	length	that
has	a	name,	but	some	unit,	however	small—the	fact	is	that	this	is	not	the	way
reality	works	in	this	universe.	Nor	does	the	problem	of	incommensurability	exist
only	with	isosceles	triangles.	It	was	also	true	of	the	“gate”	measured	on	the
Babylonian	tablet.	The	Babylonians	knew	about	the	triples	and	also	apparently
accepted	that	the	units	measuring	the	diagonal	most	of	the	time	did	not	come	out
even.

The	early	Pythagoreans	may	well	have	discovered	the	problem,	but	it	is	far
less	likely	that	they	found	the	solution—irrational	numbers—or	that	they	would
have	liked	it	if	they	had.*	Irrational	numbers	are	not	neat	or	beautiful	like	whole
numbers.	An	irrational	number	has	an	infinitely	long	string	of	digits	to	the	right
of	the	decimal	point	with	no	regularly	repeating	digit	or	group	of	digits.

The	suggestion	that	the	only	information	Pythagoras	learned	elsewhere	was
a	vestige	of	the	theorem—the	triple	3–4–5—has	in	its	favor	that	it	solves	a
problem	with	the	sequence	of	the	Pythagoreans’	discoveries.	In	order	to	have
had	a	devastating	crisis	of	faith	resulting	from	the	discovery	of
incommensurability,	they	had	to	have	had	the	faith	first,	not	the	crisis,	and
indeed	the	tradition	is	strong	that	this	was	the	order	in	which	the	discoveries
were	made.	However,	it	is	difficult	to	imagine	anyone	discovering	the	theorem
from	scratch	(without	the	triple)	while	not	simultaneously	discovering	the
problem.	Another	possible	sequence	would	have	the	Pythagoreans	discovering
incommensurability	first,	as	they	struggled	with	right	triangles,	and	only	later
realizing	that	a	few	right	triangles	were,	in	fact,	not	incommensurable;	but	that	is
not	the	traditional	sequence.	A	similar	issue	undermines	the	possibility	that
Pythagoras	learned	the	whole	theorem	elsewhere:	He	would	also	have	learned
about	incommensurability,	so	that	it	could	have	come	as	no	surprise	later.

Eleanor	Robson	is	convinced,	from	evidence	in	the	mathematics	itself,	that
Old	Babylonian	mathematics	was	not	the	arithmetical	precursor	to	early	Greek
mathematics;	but	a	triple	used	in	construction	and	surveying—the	origin	of
which	no	one	remembered—hardly	represented	the	bulk	of	Old	Babylonian
mathematics.14	It	could	have	waited	on	the	shelf	while	the	Pythagoreans



investigated	harp	string	lengths	and	discovered	musical	ratios.	The	study	of
those	was	a	new	kind	of	thinking	about	numbers,	what	Aristoxenus	meant	when
he	wrote:	“The	numbers	were	withdrawn	from	the	use	of	merchants	and	honored
for	themselves.”	A	love	of	this	sort	of	thinking	could	have	led	the	Pythagoreans,
after	their	musical	discovery,	to	consider	the	3–4–5	triple	more	carefully.
Granted,	this	particular	triangle	was,	by	Pythagorean	standards,	not	very
interesting.	Five	does	not	show	up	in	the	basic	ratios	of	music;	3,	4,	and	5	do	not
add	up	to	10	or	make	the	tetractus.	No	one	is	going	to	swear	by	this	triangle!	But
the	hidden	connection	.	.	.	that	was	another	reason	to	fall	to	one’s	knees,	and
perhaps	to	have	a	huge	crisis	of	faith	when	you	began	looking	at	other	right
triangles.

Some	Pythagoreans	reputedly	found	other	beauty	in	the	triplet:	They
designated	5	as	“marriage.”	The	5-unit	side	of	this	right	triangle	connected	the	3-
unit	side	and	the	4-unit	side.	Thus,	5,	or	“marriage,”	connected	3	(which	is	odd)
and	4	(even).	“Odd”	was	male	and	“limiting”;	“even”	was	female	and
“limitless.”	So	this	triangle	was	a	manifestation	of	the	harmony	reconciling
limiting	and	limitless.	In	the	modern	world,	we	associate	such	weak	links	with	a
different	sort	of	mind	from	that	which	would	come	up	with	the	Pythagorean
theorem.	In	the	ancient	world,	whose	people	were	taking	the	first	tentative	steps
toward	understanding	nature	and	the	cosmos	and	the	human	condition,	that
distinction	is	invalid.

If	Pythagoras	discovered	or	knew	the	rule,	did	he	prove	it?	Most	historians
of	mathematics	believe	that	the	concept	of	“proof”	as	later	understood	was
unknown	before	the	Alexandrian	Euclid	introduced	it	in	his	Elements,	around
300	B.C.	The	decision	that	something	would	“be	true	for	every	right	triangle,”	for
someone	living	as	early	as	Pythagoras,	would	probably	have	been	made	on
grounds	other	than	a	Euclidian	proof.	It	would	either	have	been	an	unsupported
assumption	or	a	guess,	or	a	decision	made	in	a	scientific	rather	than	a
mathematical	way—by	testing	it,	as	many	times	and	with	as	many	different
examples	as	possible.	The	idea	that	mathematical	statements	should	apply
generally,	though	taken	for	granted	today	and	implied	in	the	Babylonian	work,
was	not	usually	part	of	the	ancient	mind-set	before	Pythagoras.	It	is	considered
to	be	one	of	the	great	contributions	of	early	Greek	mathematics	and	probably	a
contribution	of	Pythagoras	and	his	followers.	With	them,	it	might	have	been	only
an	assumption	based	on	their	belief	in	the	unity	of	all	being,	not	something	they
could	demonstrate	at	all	or	even	thought	it	necessary	to	demonstrate.

There	are,	nevertheless,	simple	proofs	of	the	theorem	that	some	would	like
to	attribute	to	the	Pythagoreans,	and	one	argument	that	they	used	such	proofs	is



that	these	same	thought	sequences	are	good	ways	to	discover	the	theorem,	even
if	you	had	no	concept	of	“proofs”	after	the	fact.	There	is	a	geometry	lesson	in
Plato’s	Meno	that	some	think	is	traceable	to	Pythagoras.	The	clue	is	that	Plato
used	it	to	demonstrate	the	“recollection”	of	what	one	learned	before	birth,	an
idea	related	to	the	Pythagorean	doctrine	of	memory	of	past	lives.	The	triangle	in
the	Meno	proof	is	the	troublesome	isosceles	triangle,	but	the	proof	sidesteps	the
problem	of	incommensurability	by	using	no	numbers.	It	is	admittedly	difficult	to
imagine	Pythagoreans	being	satisfied	with	any	“truth”	that	used	no	numbers.	It
would	have	seemed	the	universe	was	thumbing	its	nose	at	them,	with	this
triangle	that	provided	such	a	clear	and	unequivocal	demonstration	of	their	rule,
and	that	contained	incommensurability.	The	discussion	of	Plato’s	proof	fits
better	in	the	context	of	a	later	chapter.	Bronowski,	in	the	book	from	his
television	series,	showed	another	numberless	proof	that	he	believed	Pythagoras
may	have	used.	Bronowski’s	clever	proof	is	in	the	Appendix.

The	right	triangle	was	not	the	only	pitfall	in	Pythagorean	thinking	where
incommensurability	lurked,	but	it	was	the	most	obvious.	The	scholarly	argument
about	whether	the	Pythagoreans	discovered	it,	and	whether	that	caused	a	crisis	of
faith	in	the	rationality	of	the	universe,	rambles	on	until	it	resembles	that	string	of
digits	after	the	decimal	place	in	an	irrational	number.	However,	in	truth,	an
intelligent	person	thinking	along	Pythagorean	lines	and	dealing	with	right
triangles	could	hardly	have	missed	discovering	incommensurability.	But	only
someone	who	reverenced	numbers	and	the	rationality	of	the	universe	would	have
been	deeply	troubled.	Some	have	thought	that	Pythagoras	and	his	followers
reacted	by	retreating	to	a	geometry	without	numbers—that	what	had	early	been
an	“arithmetized	geometry”	was	reformulated	in	a	nonarithmetical	way,	and	this
carried	over	into	Euclid.	In	spite	of	the	passage	in	Plato’s	Meno,	and	the
suggestion	that	it	reflected	Pythagoras’	proof	of	his	theorem,	nothing	could	seem
more	blatantly	un-Pythagorean	than	a	retreat	from	numbers!15

Porphyry	would	have	been	pleased	to	learn	that	the	earlier	Mesopotamians
knew	about	right	triangles,	the	triples,	and	the	theorem.	His	choice	of
possibilities	would	almost	certainly	have	been	that	the	theorem	was	known
earlier	but	that	Pythagoras’	was	an	independent	discovery,	for	he	believed	that
several	ancient	peoples—he	named	the	Indians,	Egyptians,	and	Hebrews—
possessed	primeval,	universal	wisdom	(prisca	sapientia	was	the	later	term),	and
Pythagoras	was	the	first	to	possess	it	in	the	Greek	world.16	The	theorem	is	so
intrinsic	to	nature,	so	beautifully	simple,	that	it	would	be	odd	if	no	earlier
triangle	user	in	prehistory	or	antiquity	got	curious	and	figured	it	out.

What	about	a	more	startling	suggestion:	that	Pythagoras	had	nothing



whatsoever	to	do	with	the	discovery?	Could	it	be	that	it	was	later	credited	to	him
only	because	such	legends	tend	to	become	associated	with	famous	people?	Over
two	thousand	five	hundred	years,	numerous	achievements	that	were	not	remotely
Pythagorean	have	been	carelessly	credited	to	Pythagoras.	“Pythagorean”	or	“of
Pythagoras”	have	become	descriptive	words	connoting	something	clever	that
shows	mathematical	insight,	with	an	overlay	of	wisdom,	fairness,	or	morality.	A
“Pythagorean	cup,”	sold	on	Samos,	punishes	the	immoderate	drinker	who	fills	it
above	a	marked	line,	by	allowing	the	entire	cup	of	wine	to	drain	out	the	bottom.
Modern	citizens	of	Samos	are	surprised—or	at	least	pretend	to	be—that	anyone
would	doubt	this	was	an	invention	of	Pythagoras.	A	“Pythagorean”	formula
predicts	which	baseball	teams	in	America	are	likely	to	win.	No	one	is	insulted	by
doubts	about	that	one.

A	WORSE	POSSIBILITY	for	Pythagoras’	image	is	that	he	took	the	theorem	from	the
Babylonians	and	claimed	it	as	his	own.	According	to	Heraclitus,	he	“practiced
inquiry	more	than	any	other	man,	and	selecting	from	these	writings	he	made	a
wisdom	of	his	own—much	learning,	mere	fraudulence.”*	It	would	certainly	not
have	surprised	Heraclitus	if	Pythagoras	had	stolen	the	Pythagorean	theorem
lock,	stock,	and	barrel	from	the	Babylonians.	However,	the	fragments	in	which
Heraclitus	dismissed	him	as	an	imposter	also	placed	Pythagoras	high	in	the
echelon	of	thinkers.	Two	of	Heraclitus’	other	targets,	Xenophanes	and
Hecataeus,	were	renowned	polymaths.	“Inquiry”	meant	not	study	in	general	but
Milesian	science.	Most	scholars	think	that	Heraclitus	had	no	basis	for	his	attacks.
He	had	an	aversion	to	polymaths,	and	he	was	simply	an	ornery	and	contentious
man	being	ornery	and	contentious.	On	another	occasion	he	commented	that
“Homer	should	be	turned	out	and	whipped!”

If	the	Pythagoreans	did	come	up	with	the	theorem	independently,	the
question	remains	whether	credit	should	go	to	Pythagoras	and	his	contemporaries
or	to	later	generations	of	Pythagoreans.	Intemperate	Heraclitus	would	not	have
been	pleased	to	know	that	evidence	coming	from	his	own	work	places	the
appearance	of	the	Pythagorean	mathematical	achievements	in	Pythagoras’
lifetime:	Heraclitus	followed	up	on	Pythagorean	ideas	about	the	soul	and
immortality	and	continued	to	develop	the	idea	of	harmony.	For	him,	the	lyre	and
the	bow—Apollo’s	musical	instrument	and	weapon—symbolized	the	order	of
nature.	The	bow	was	“strife,”	the	lyre	harmonia.	The	significance	of	the	bow
(“strife”)	was	original	with	Heraclitus,	but	the	role	of	the	lyre	and	harmonia
were	developments	from	Pythagorean	thought,	which	suggests	that	the	idea	of
connections	between	numerical	proportions,	musical	consonances,	and	the
Pythagorean	numerical	arrangement	of	the	cosmos	dated	from	the	time	of



Pythagoras	himself.	Heraclitus	was	only	one	generation	younger	than
Pythagoras.

In	the	first	century	B.C.,	the	theorem	seems	to	have	been	widely	attributed	to
Pythagoras.	A	case	in	point:	The	great	Roman	architect	Marcus	Vitruvius	Pollio,
better	known	as	Vitruvius,	knew	it	well,	attributed	it	without	question	to
Pythagoras,	and,	in	Book	9	of	his	ten-volume	De	architectura,	mentioned	the
sacrifice	to	celebrate	it.	Apparently	Vitruvius	could	write	about	Pythagoras	as
the	discoverer	of	the	theorem	and	assume	that	no	one	would	gainsay	him.	He
knew	other	methods	of	forming	a	right	triangle,	but	found	Pythagoras’	much	the
easiest:

Pythagoras	demonstrated	the	method	of	forming	a	right	triangle
without	the	aid	of	the	instruments	of	artificers:	and	that	which	they
scarcely,	even	with	great	trouble,	exactly	obtain,	may	be
performed	by	his	rules	with	great	facility.

Let	three	rods	be	procured,	one	three	feet,	one	four	feet,	and
the	other	five	feet	long;	and	let	them	be	so	joined	as	to	touch	each
other	at	their	extremities;	they	will	then	form	a	triangle,	one	of
whose	angles	will	be	a	right	angle.	For	if,	on	the	length	of	each	of
the	rods,	squares	be	described,	that	whose	length	is	three	feet	will
have	an	area	of	nine	feet;	that	of	four,	of	sixteen	feet;	and	that	of
five,	of	twenty-five	feet:	so	that	the	number	of	feet	contained	in
the	two	areas	of	the	square	of	three	and	four	feet	added	together,
are	equal	to	those	contained	in	the	square,	whose	side	is	five
feet.17

WHERE,	THEN,	DOES	this	discussion	end?	In	spite	of	the	certainty	that	Vitruvius
and	his	contemporaries	shared,	the	most	skeptical	modern	scholars	think
Pythagoras	had	nothing	to	do	with	the	theorem	at	all.	Others	do	not	close	the
door	to	the	possibilities	that	Pythagoras	and/or	his	early	followers	may	have
made	the	discovery	independently,	unaware	of	previous	knowledge	of	the
theorem,	or	that	they	learned	it	elsewhere	but	were	the	first	to	introduce	it	to	the
Greeks.

My	own	conclusion	is	that	there	is	no	good	reason	to	decide	that	Pythagoras
and	the	Pythagoreans	had	nothing	to	do	with	the	theorem,	and	several
meaningful	hints	that	they	did,	including	the	fact	that	Plato	chose	to	assume	that
right	triangles	were	the	basic	building	blocks	of	the	universe	when	he	wrote	his
Timaeus,	the	dialogue	most	influenced	by	Pythagorean	thinking.*	If	earlier



knowledge	of	the	theorem	had	indeed	been	lost,	then	someone	had	rediscovered
it	at	about	the	time	of	Pythagoras.	Of	all	those	who	were	aware	of	right	angles
and	triangles	and	used	them	in	practical	and	artistic	ways,	the	Pythagoreans	were
unique	in	their	approach	to	the	world,	apparently	having	the	motivation	and
leisure	to	give	top	priority	to	ideas	and	study.	Their	intellectual	elitism	kept	them
focused	beyond	the	nitty-gritty	of	“what	works”	on	the	artisan	level,	and	their
musical	discovery	led	them	to	think	beyond	number	problem	solving	for	its	own
sake—causing	them	to	turn	their	eyes	beneath	the	surface	and	view	nature	in	an
iconic	way.	For	the	Pythagoreans	(as	for	no	others	among	their	contemporaries),
the	theorem	would	have	represented	an	example	of	the	wondrous	underlying
number	structure	of	the	universe,	reinforcing	their	view	of	nature	and	numbers
and	the	unity	of	all	being,	as	well	as	the	conviction	that	their	inquiry	was
worthwhile,	and	that	their	secretive	elitism	was	something	to	be	treasured	and
maintained.	Has	any	other	ruling	class—and	the	Pythagoreans	seem	also	to	have
been	busy	ruling—had	that	same	set	of	priorities?	Regarding	the	possibility	that
they	began	with	the	triple,	I	like	the	fact	that	their	having	it	would	not	imply	a
continuum	with	the	Old	Babylonian	mathematical	tradition—a	continuum	that
scholars	like	Robson	have	convincingly	argued	did	not	exist.	And	in	this
scenario,	the	Babylonian	evidence,	instead	of	pulling	Pythagoras	off	the
pedestal,	actually	suggests	a	way	that	he	and	his	followers	could	have
rediscovered	the	theorem	in	the	time	and	place	that	tradition	has	always	said
they	did	without	being	disillusioned	too	soon	by	the	discovery	of
incommensurability.

Bronowski	credited	Pythagoras	with	discovering	the	link	between	the
geometry	of	the	right	triangle	and	the	truth	of	primordial	human	experience.	He
echoed	Plato’s	reverence	for	right	triangles	as	the	basics	of	creation	when	he
wrote,	“What	Pythagoras	established	is	a	fundamental	characterization	of	the
space	in	which	we	move.	It	was	the	first	time	that	was	translated	into	numbers.
And	the	exact	fit	of	the	numbers	describes	the	exact	laws	that	bind	the	universe.”
Bronowski	for	that	reason	thought	it	not	extravagant	to	call	the	“theorem	of
Pythagoras”	“the	most	important	single	theorem	in	the	whole	of	mathematics.”18

But	what	of	the	ox?	Did	Pythagoras	sacrifice	it,	or	perhaps	forty	of	them
(some	stories	say),	in	thanksgiving	for	the	discovery	of	the	theorem?	That
Apollodorus	referred	to	this	“famous”	story	does	not	necessarily	mean	he
believed	it.	Many	dismiss	the	tale	as	impossible	on	the	grounds	that	Pythagoras,
who	ate	no	meat,	would	not	have	sacrificed	an	ox.	However,	there	is	plenty	of
evidence	that	he	had	no	objection	to	the	slaughter	of	animals	for	ritual	purposes.
If	vegetarianism	is	a	clue,	it	may	point	in	a	different	direction:	Later
Pythagoreans	were	more	ready	than	early	ones	to	believe	that	Pythagoras	was	a



Pythagoreans	were	more	ready	than	early	ones	to	believe	that	Pythagoras	was	a
strict	vegetarian.	Burkert	thought	the	existence	of	the	sacrifice	story	“ought
rather	to	be	considered	an	indication	of	antiquity,”	weighing	in	on	behalf	of	the
argument	that	Pythagoras	or	his	earliest	followers	made	the	discovery	that
spawned	the	tale.	A	later	generation	would	not	have	made	up	this	story	about
their	hero.



PART	II

Fifth	Century	B.C.–Seventh	Century	A.D.



CHAPTER	7

A	Book	by	Philolaus	the	Pythagorean
Fifth	Century	B.C.

AFTER	PYTHAGORAS’	DEATH,	the	demise	of	the	Pythagorean	brotherhood	in
southern	Italy	did	not	take	place	overnight	or	in	a	few	short	years.	Many
Pythagoreans	survived	the	violence	that	ushered	in	the	fifth	century	B.C.,	and	the
Pythagorean	drama,	minus	its	lead	character,	continued	in	the	colonial	cities.
Only	one	Pythagorean	is	known	for	certain	by	name	from	that	period:	Hippasus
of	Metapontum.	He	was	a	scholar	and	perhaps	a	brilliant	one,	apparently	part	of
the	Pythagorean	inner	circle,	who	worked	in	music	theory,	mathematics,	and
natural	philosophy	and	considered	fire	a	first	principle.	One	report	credits
Hippasus	with	constructing	the	dodecahedron,	the	twelve-sided	solid—he	“first
drew	the	sphere	constructed	out	of	twelve	pentagons.”	He	may	have	taught	the
cantankerous	Heraclitus.	However,	after	Pythagoras’	death,	Hippasus	fell	from
grace,	and	he	is	chiefly	remembered	as	an	ill-fated,	perhaps	ill-intentioned
figure.

When	the	Pythagoreans	discovered	that	mathematical	relationships	underlie
nature,	they	did	not	announce	this	to	the	world.	Secrecy	was	their	custom.
Hippasus,	however,	had	to	have	been	privy	to	the	discovery,	because	he
performed	the	successful	experiment	with	bronze	disks.	Some	stories	connected
him	with	the	discovery	of	incommensurability,	or	even	made	him	the	unlucky
discoverer.	Accounts	differed	about	how	he	erred,	but	somehow,	while	all	good
things	were	attributed	to	Pythagoras,	all	bad	things	seemed	to	get	hung	on
Hippasus.	His	transgression	was	revealing	a	secret	of	geometry,	or	discovering
incommensurability,	or	effrontery	to	the	gods	by	making	a	discovery	in
geometry	(that	could	have	been	the	dodecahedron),	or	taking	credit	for	a
discovery	instead	of	attributing	it	to	Pythagoras.

The	most	nuanced	and	authentic-sounding	material	about	Hippasus	comes
from	Aristotle	and	Aristoxenus,	and	it	links	Hippasus	with	a	fault	line	that
developed	in	the	Pythagorean	brotherhood	between	two	factions	calling
themselves	the	acusmatici	and	the	mathematici.1	The	antagonism,	which	may
have	had	its	roots	in	a	two-level	hierarchy	initiated	by	Pythagoras,	the	better	to
organize	his	brotherhood	according	to	interests	and	abilities,	split	the	community



into	opposing	camps.
The	acusmatici	were	devoted	to	rote	learning.	Their	philosophy	(quoting

Iamblichus)	“consisted	of	unproven	and	unargued	aphorisms,	and	they	attempted
to	preserve	the	things	Pythagoras	said	as	though	they	were	divine	doctrines.”
Scholars	surmise	that	these	aphorisms	were	relics	of	the	most	elementary,	easily
remembered	part	of	Pythagoras’	teaching.	Some	were	folk	maxims	with	added
interpretations,	with	knowledge	of	the	interpretations	possibly	serving	as
passwords	or	signifying	rank	in	the	community.	There	were	three	kinds	of
aphorisms	(this	according	to	Iamblichus):	Some	asked	what	something	was:
“What	are	the	Isles	of	the	Blessed?	The	sun	and	the	moon.”	A	second	kind
indicated	superlatives:	“What	is	most	wise?	Number.”	“What	is	most	truly	said?
That	men	are	wretched.”	A	third	concerned	minutiae	about	“what	one	must	do	or
not	do.”	Many	sounded	pointless	to	anyone	unaware	of	the	secret	interpretations.
“Do	not	turn	aside	into	a	temple”	meant	“Do	not	treat	God	as	a	digression.”	“Do
not	help	anyone	put	down	a	burden;	rather,	help	him	take	it	up”	meant	“Do	not
encourage	idleness.”	“Do	not	break	a	loaf	of	bread”	because	“it	is
disadvantageous	with	regard	to	the	judgment	in	Hades.”	Iamblichus	threw	up	his
hands	at	that	and	called	it	“far-fetched.”	Acusmatici	evidently	understood	the
connection.	They	claimed	the	title	“Pythagorean”	for	themselves	exclusively.

The	mathematici,	on	the	other	hand,	were	willing	to	admit	the	acusmatici
under	the	banner	of	the	brotherhood,	but	they	preserved	and	extended	a	different
kind	of	Pythagorean	knowledge.	Though	not	always	agreeing	among
themselves,	they	shared	a	conviction	that	the	acusmatici’s	refusal	to	allow
knowledge	to	develop	further	was	contrary	to	the	spirit	in	which	Pythagoreanism
had	been	practiced	when	Pythagoras	was	alive.

According	to	Aristotle	and	Aristoxenus,	Hippasus	was	one	of	the
mathematici,	or	one	of	those	who	would	be	labeled	mathematici	when	the
groups	became	fully	polarized.	The	opposing	camp—those	who	would	be
known	as	acusmatici—frowned	on	his	work	as	new	and	subversive.	The
mathematici	might	have	been	expected	to	defend	Hippasus,	but	they	were
engaged	in	delicate	maneuvers,	insisting	they	were	not	introducing	new
doctrines,	merely	working	on	explication	of	the	doctrines	of	Pythagoras.	They
disassociated	themselves	from	Hippasus,	to	no	avail	since	the	acusmatici
continued	to	accuse	them	of	following	him	rather	than	Pythagoras.	Hippasus	was
caught	in	the	crossfire.	His	punishment,	from	the	gods	or	the	Pythagoreans,
depending	on	which	story	to	believe,	was	drowning	at	sea,	expulsion	from	the
community,	and/or	the	construction	of	a	tomb	to	him	as	though	he	were	dead.

Hippasus’	story	provides	a	clue	for	dating	some	of	the	Pythagorean
discoveries.	Modern	historians	are	skeptical	about	the	claim	that	Hippasus	taught



discoveries.	Modern	historians	are	skeptical	about	the	claim	that	Hippasus	taught
Heraclitus,	but	they	think	the	fact	that	many	believed	he	did	dates	Hippasus
reliably.	He	was	supposed	to	have	taught	Heraclitus,	not	the	other	way	around,
and	since	Heraclitus’	lifetime	overlapped	Pythagoras’,	Hippasus	must	have	been
an	even	earlier	contemporary	of	Pythagoras.	Furthermore,	Hippasus’	disk
experiment	had	to	have	happened	after	the	discovery	of	the	ratios	and	before
Hippasus’	disgrace,	which	occurred	(dated	by	the	split	in	the	brotherhood)
shortly	after	Pythagoras’	death.	This	chronology	makes	it	impossible	for	the
discovery	of	the	musical	ratios	to	have	been	made	later,	in	the	next	generation.
They	were	an	authentically	early	Pythagorean	discovery.

Hippasus’	disgrace	and	the	mathematici/acusmatici	conflict	are	not	the	only
evidence	that	some	Pythagoreans	who	survived	the	turn-of-thecentury	upheavals
stayed	in	Magna	Graecia.	Remnants	of	the	brotherhood	persisted	throughout	the
region.	Iamblichus	had	information	that	Pythagoras’	“successor”	was	Aristaeus,
who	married	his	widow	Theano,	“carried	on	the	school,”	and	educated
Pythagoras’	children.	A	son	of	Pythagoras	named	Mnesarchus	reputedly	took
over	the	school	when	Aristaeus	became	too	old.	If	folk	memory	in	Metapontum
had	it	right,	Pythagoras	survived	for	a	while	in	exile	and	established	a	school
there.

Some	Pythagoreans	continued	to	hold,	or	rapidly	regained,	positions	of
political	importance	and	possibly	extended	their	influence	over	an	even	wider
area	than	before,	but	as	these	leaders	became	influential	again	in	the	government
of	the	cities,	they	courted	disaster	by	ruling	more	and	more	autocratically.	A
revolution	unseated	them	in	midcentury,	about	454	B.C.	The	second	century	B.C.
historian	Polybius	repeated	a	description	he	found	in	earlier	accounts:	“The
Pythagorean	meeting	places	were	burned	down	and	general	constitutional	unrest
ensued—a	not	unlikely	event,	given	that	the	leading	men	in	each	state	had	been
thus	unexpectedly	killed.	The	Greek	cities	in	these	regions	were	filled	with
bloodshed	and	revolution	and	turmoil	of	every	kind.”	The	result	this	time	was	a
Pythagorean	diaspora—to	Thebes,	to	Phlius	(near	Corinth),	to	Syracuse,	and
elsewhere.	The	curtain	fell	for	the	second	and	final	time	on	the	Pythagorean
golden	age	in	Magna	Graecia.	The	original	community	that	Pythagoras	had
taught	no	longer	existed.

In	a	larger	context,	the	story	had	only	begun.	From	about	this	time,	there
were	two	discernible	contrasting	strands	of	thought	in	the	ancient	Mediterranean
world:	“Ionian,”	from	mainland	Greece	and	that	area	of	the	Mediterranean;	and
“Pythagorean”	or	“Italian,”	stemming	from	southern	Italy.	Through	members	of
Pythagorean	refugee	communities	and	their	intellectual	descendants—and	men
like	Plato	who	were	drawn	to	their	ideas—the	remnants	of	the	thinking	of	an
obscure	ancient	group	became	a	powerful	worldview.	By	late	antiquity,	no	one



obscure	ancient	group	became	a	powerful	worldview.	By	late	antiquity,	no	one
could	claim	to	be	a	serious	thinker	and	ignore	the	“Pythagorean”	or	“Italian”
school.

Meanwhile,	the	acusmatici/mathematici	split	nevertheless	continued	to
infect	the	scattered	brotherhood,	and	the	disagreement	about	who	reflected	the
spirit	and	work	of	the	first	Pythagoreans	still	causes	difficulty	for	anyone	trying
to	discern	the	truth	about	that	earliest	era.	Most	educated	people	through	the
centuries	would	insist	that	the	mathematici	were	the	true	Pythagoreans,
preserving	and	extending	the	great	Pythagorean	mathematical	legacy.	The	reason
for	this	certainty	is	that	it	was	the	mathematici	tradition	that	Plato	handed	down
to	the	future.	He	made	the	choice	for	Western	civilization.

Aristotle,	a	generation	later	than	Plato,	was	well	acquainted	with	both
Pythagorean	varieties	and	described	an	acusmatici	legacy	that	in	addition	to	the
aphorisms	included	the	miraculous	legends,	the	doctrine	of	reincarnation	and
Pythagoras’	memory	of	his	past	lives.	The	mathematici	legacy	accepted	most	of
that,	too,	but	emphasized	the	different	approach	to	the	world	and	the	soul
through	numbers,	mathematics,	and	music.	The	mathematici	had	preserved
historical	information:	that	Pythagoras	came	to	Croton	during	the	reign	of
Polycrates	on	Samos	and	had	a	powerful	influence	on	the	leaders	of	his	new
home	city.	Aristotle	never	traced	a	heritage	of	knowledge	and	mathematics	to
Pythagoras	himself	by	naming	names	in	succeeding	generations,	but	he	had	no
quarrel	with	the	mathematici’s	claim	that	this	unbroken	heritage	existed.2	Plato
attributed	a	sophisticated	version	of	the	Pythagorean	mathematici	number	theory
not	just	to	Pythagoreans	but	to	Pythagoras	himself.

THE	SECOND	HALF	of	the	fifth	century	B.C.	(450	to	400)	is	still	much	alive	in	the
cultural	memory	of	the	modern	world.	Greek	tragedy	had	blossomed	with
Aeschylus	and	was	continuing	with	the	plays	of	Sophocles	and	Euripides,	raising
issues	that	need	no	modern	context	to	make	them	relevant	today.	Aristophanes
was	scandalizing	his	delighted	audiences,	satirizing	public	affairs	and	leaders	in
brilliant,	flagrantly	indecent	comedies.	Though	these	would	soon	be	dubbed
“Old	Comedy”	as	newer	forms	and	subjects	become	fashionable,	in	the	twenty-
first	century	his	The	Frogs	became	a	Broadway	musical.	The	physician
Hippocrates	was	working	and	writing,	and	medical	school	graduates	more	than
two	millennia	later	repeat	the	oath	attributed	to	him.	Athens,	in	mainland
Greece,	was	picking	up	the	pieces	after	a	long	conflict	with	the	Persians	and
enjoying	an	interval	of	peace,	growing	rich	from	silver	mines	and	tribute	from
other	members	of	the	Delian	League,	former	allies	in	the	Persian	Wars.	Unaware



how	short	this	respite	would	be	before	they	became	involved	in	the
Peloponnesian	Wars,	Athenians	restored	their	city,	which	the	Persians	had
burned,	and	erected	the	Parthenon.	In	this	half-century,	Plato	was	born	and	grew
to	manhood,	and	Philolaus	the	Pythagorean,	nearly	fifty	years	Plato’s	senior,
wrote	the	first	Pythagorean	book—or	at	least	the	first	that	was	destined	to
survive.

Philolaus	was	one	of	the	refugees	who	left	Croton	or	Tarentum	at
midcentury.	He	settled	in	about	454	in	Thebes,	a	powerful	old	city	northwest	of
Athens	whose	ancient	origins	made	her	a	favorite	setting	for	Greek	dramas.	She
had	once	been	the	seat	of	the	real	King	Oedipus.	Politically,	Thebes’	only
consistent	policy	was	hatred	of	Athens.	She	had	sided	against	Athens	in	the
Persian	Wars	and	then	collaborated	with	Sparta	against	her,	an	alliance	that
would	last	until	nearly	the	end	of	the	Peloponnesian	Wars	at	the	close	of	the
century.	Thebes	and	Sparta	would	finally	part	ways	when	Thebes	suggested	the
defeated	Athenians	be	totally	annihilated	and	Sparta	disagreed.

It	would	appear	that	Thebes	was	not	a	particularly	serene	location	for	a
fledgling	brotherhood	to	pursue	peaceful	studies,	but	Philolaus	founded	a	new
exile	Pythagorean	community	there.	He	had	either	died	or	moved	elsewhere	by
the	end	of	the	century—information	that	comes	indirectly	through	Plato,	who	in
his	dialogue	Phaedo	had	a	character	named	Cebes	comment,	“I	heard	Philolaus
say,	when	he	was	living	in	our	city.	.	.”	Cebes’	city	was	Thebes,	and	this
conversation	was	supposed	to	be	taking	place	the	day	Socrates	died	in	399	B.C.	If
Philolaus	was	still	alive	then	somewhere	else,	he	was	seventy-five,	but	that
reference	to	him	was	the	last	that	has	survived.

Some	time	between	450	and	399	B.C.,	probably	in	Thebes,	Philolaus	set
down	an	extensive	written	record	of	Pythagorean	thought,	something	no
Pythagorean	had	done	before	as	far	as	anyone	has	been	able	to	discover.	The
only	traces	of	it	today	are	fragments,	mostly	references	in	the	writing	of	scholars
during	the	first	century	A.D.,	long	removed	from	his	time.*	In	the	nineteenth
century	there	was	controversy	about	whether	Philolaus	wrote	a	book	and
whether	the	fragments	are	genuine,	but	in	1893	a	papyrus	came	to	light	with
excerpts	from	a	medical	history	by	Menon,	a	pupil	of	Aristotle	in	the	fourth
century	B.C.,	referring	to	a	book	by	Philolaus	that	already	existed	then.	Since	that
discovery,	scholars	have	analyzed	the	Philolaus	fragments	in	the	context	of	the
fifth	century	B.C.,	Philolaus’	century,	and	they	largely	agree	about	which	are
authentic.3

Though	it	hardly	seems	fair	to	Philolaus,	anyone	looking	for	specifics	about
Pythagoras	and	what	he	taught	is	frustrated	by	the	fact	that	Philolaus	was	a



splendid	thinker	in	his	own	right.	He	was	writing	his	own	book,	not	recording
the	discoveries	or	words	of	another	man,	and	included	his	own	thinking	as	well
as	what	had	evolved	in	the	Pythagorean	mathematici	communities	since
Pythagoras’	death.	Nevertheless,	Philolaus	definitely	considered	himself	a
Pythagorean,	and,	given	the	time	frame,	much	of	the	science	and	doctrine	in	his
book	must	have	been	a	direct	reflection	of	Pythagoras	and	his	earliest	followers.
Philolaus	was	almost	a	direct	link,	for	Pythagoras	had	died	or	disappeared	from
public	view	in	500	B.C.,	only	twenty-five	years	before	Philolaus’	birth.	Philolaus’
teachers	and	acquaintances	as	he	grew	up	in	Croton	or	Tarentum	must	have	been
almost	exclusively	Pythagoreans,	and	some	of	the	older	of	them	would	have
known	Pythagoras.

An	anachronistic,	late	fifteenth-century	A.D.	drawing,	from	a	music	theory	book	by	Gaffurio,	reveals
how	scholars	of	that	era	envisioned	Pythagoras	(and	Philolaus,	who	was	not	actually	Pythagoras’s
contemporary)	studying	the	ratios	of	musical	harmony.

Unfortunately,	Philolaus	treated	all	of	his	material	as	a	unified	body	of
knowledge,	making	no	distinctions	between	earlier	and	later,	between	the	time
Pythagoras	was	alive	and	the	time	of	Philolaus’	writing,	or	between	himself	and
others.	He	was	not	being	careless.	For	a	Pythagorean	there	was	unity	to	truth,
and	unity	to	the	search	for	it.	The	path	to	knowledge	about	the	universe	and	the
path	to	reunion	with	the	divine	were	one	and	the	same	path.	Truth	about	nature,
and	divine	truth,	were	one	and	the	same	truth.	In	such	a	context,	even	if
Pythagoras	himself	had	not	made	a	particular	discovery,	one	could	assume	it	had
been	implicit	in	his	teachings.	Furthermore,	there	was	a	form	of	ancient	one-
upmanship	that	Pythagoreans	like	Philolaus	shared	with	their	contemporaries.	It
was	de-meaning	to	an	idea	or	discovery	to	call	it	new	or	original.	Knowledge
became	more	credible	the	older	it	was	and	the	more	it	could	be	attributed	to	a
great	figure.	Philolaus	would	have	been	loath	to	identify	any	source	other	than
Pythagoras,	even	if	it	was	himself.



Nevertheless,	Philolaus	was	not	without	an	agenda	of	his	own.	One	of	the
clues	that	place	his	writing	in	the	late	fifth	century	B.C.	was	that	he	was	trying	to
present	Pythagorean	ideas	in	a	way	that	responded	to	a	stalemate	arising	from
“Eleatic”	teaching.

The	philosopher	Parmenides	was	from	Elea	(hence	“Eleatic”),	a	Greek
colony	north	of	Croton	on	Italy’s	west	coast.	According	to	Plato	he	was	born	in
515	B.C.,	but	Greek	chronicles	say	about	540.	In	either	case,	he	was	a	younger
contemporary	of	Pythagoras,	but	remarkably,	in	spite	of	the	overlap	of	their
lifetimes,	the	close	proximity	of	Elea	to	Croton,	and	a	passage	in	Plutarch	that
says	Parmenides	“organized	his	own	country	by	the	best	laws,”	only	one	early
source	gave	Parmenides	even	the	remotest	link	with	Pythagoras	or	the
Pythagoreans.	The	link	was	indirect,	in	Diogenes	Laertius’	third-century-A.D.
biography	of	Pythagoras:

[Parmenides]	was	also	associated	(as	Sotion	said)	with	Ameinias,
son	of	Diochaites,	the	Pythagorean,	a	poor	man	but	of	good
character.	It	was	rather	Ameinias	that	he	followed:	when
Ameinias	died	he	set	up	a	shrine	for	him	(Parmenides	came	from
a	famous,	wealthy	family);	and	he	was	led	to	calm	by	Ameinias
and	not	by	Zeophanes.

It	would	seem	that	if	Parmenides	“followed”	Ameinias,	was	“led	to	calm”	by
him,	and	thought	so	highly	of	him	as	to	set	up	a	shrine,	then	Parmenides’	own
thinking	would	show	traces	of	Pythagorean	ideas.	Lured	by	this	clue,	scholars
have	repeatedly	attempted	to	find	elements	of	Pythagoreanism	in	Parmenides’
writing,	with	no	success.

In	a	paradoxical	twist,	history	celebrates	Parmenides	for	insights	that	he	did
not	claim	were	correct;	for	example,	that	the	light	of	the	Moon	“always	gazing	at
the	rays	of	the	Sun”	is	reflected	light.4	He	laid	out	such	ideas	in	Part	2	of	a
beautiful,	enigmatic	poem,	after	he	had	warned	in	Part	1—a	guide	to	the	Way	of
Truth—that	what	he	was	going	to	present	in	Part	2	was	“deceitful.”	He	was	not
claiming	to	present	“facts”	or	even	opinions,	only	what	human	opinion	on	these
matters	might	plausibly	be	at	best.

He	argued	that	those	setting	out	on	a	voyage	of	“inquiry”	probably
mistakenly	believed	they	had	a	choice	between	two	subjects,	things	that	existed
and	things	that	did	not	exist.	But	nonexistent	things	were	unthinkable	and
unsayable,	and	inquiry	into	them	was	“a	trail	of	utter	ignorance.”	As	for	what
existed,	certain	things	had	to	be	true	about	it:	It	had	always	to	have	existed,	and



it	had	to	be	indestructible.	Otherwise	there	would	be	a	chance	it	might	at	some
time	not	exist,	which	was	unthinkable	and	unsayable.	It	had	also	to	be
continuous	in	space	and	time	(no	gaps),	unchanging	and	unmoving,	and	finite.
Human	senses	told	one	otherwise,	admitted	Parmenides,	but	they	could	not	be
trusted.	So	much	for	any	possibility	of	learning	about	the	world	by	observing
and	experiencing	it!

Melissus,	another	“Eleatic”	philosopher,	was	an	admiral	from	Samos,
though	his	and	Pythagoras’	lives	there	did	not	overlap.	As	Aristotle	told	the
story,	in	441	B.C.	Athens	declared	war	on	Samos.	The	Samians	defeated	Pericles
himself	in	a	sea	battle,	but	Pericles	survived	and	hostilities	continued.	When	a
stalemate	dragged	on,	Pericles,	bored	and	underestimating	the	Samians,	led
some	of	his	ships	away	on	an	expedition.	Melissus,	commanding	Samos’	fleet,
took	this	opportunity	to	attack,	“despising	the	small	number	of	their	ships	and
the	inexperience	of	their	commanders.”5	This	time	the	Athenian	fleet	suffered	a
devastating	defeat.	Samos	destroyed	many	enemy	ships,	captured	war	supplies,
and	gained	control	of	the	eastern	Mediterranean.

Melissus	also	found	the	time	to	write	a	prose	version	of	Parmenides’	Way	of
Truth,	introducing	new	arguments	to	support	Parmenides	but	disagreeing	with
him	on	key	points.	Melissus	argued	that	whatever	existed	had	to	be	infinitely
extended	in	all	directions,	not	be	finite	as	Parmenides	thought.	For	that	reason,
no	more	than	one	thing	could	be	in	existence.	Melissus	believed	even	more
strongly	than	Parmenides	that	sense	perception	was	an	illusion,	that	reality	was
completely	different	from	the	way	it	appeared.

Zeno,	like	Parmenides,	was	from	Elea.	He	came	up	with	forty	different
arguments	to	support	Melissus’	assertion	that	only	one	thing	could	exist,
produced	four	arguments	to	show	that	motion	was	impossible,	and	carried
similar	issues—including	the	concept	of	infinity—to	even	greater	extremes,
some	have	said	to	the	point	of	intellectual	nihilism.	Zeno	is	believed	to	have
been	the	author	of	a	book	called	Against	the	Philosophers,	which	almost
certainly	meant	“Against	the	Pythagoreans.”	His	criticisms	may	have	influenced
a	change	in	their	way	of	thinking	that	showed	up	in	the	work	of	Philolaus,	about
whether	a	point	in	geometry	has	any	dimensions.

The	Eleatics’	penchant	for	a	strictly	abstract,	logical	approach	and	their
distrust	of	sense	perceptions	was,	in	turn,	a	reaction	against	thinkers	like	Thales,
Anaximander,	and	Anaximenes,	all	of	whom	may	have	taught	Pythagoras.
Observational	evidence	had	seemed	no	illusion	to	them,	and	they	suggested	that
substances	such	as	water	(Thales)	and	air	(Anaximenes)	were	fundamental
reality.	Anaximander	had	been	more	abstract,	but	he	implied	a	“many”	that	did



not	gel	with	the	concept	that	only	one	thing	exists.	These	ideas	set	the	stage	for
Philolaus.	He	chose	not	to	take	on	the	Eleatics	directly,	but	continued	to	value
the	possibility	of	studying	nature	using	the	tools	of	the	five	senses.

Philolaus	dealt	with	old	questions:	How	did	everything	(the	cosmos,	or
“world	order”)	begin?	What	basics—“first	principles”	(archai)—had	to	be	in
place,	or	had	to	be	true,	in	order	for	anything	else	to	happen?	He	answered	in	the
first	sentence	of	his	book:	“Nature	in	the	cosmos	was	fitted	together
harmoniously	from	unlimited	things	and	limiting	things,	both	the	cosmos	as	a
whole	and	all	things	within	it.”	The	key	words	were	“harmoniously,”
“unlimited,”	and	“limiting.”*	The	ideas	of	the	“unlimited”	and	the	“limiting”
were	older	than	the	Eleatics	or	the	Pythagoreans,	the	first	known	mention	having
come	from	Anaximander.	“Harmoniously”	was	uniquely	Pythagorean.

If	Pythagoras	did	study	with	Anaximander,	he	learned	that	for	him	the	first
principle	was	something	more	abstract	than	Thales’	water.	It	was	the	“limitless”
(or	the	“unlimited”)—characterless,	indefinite,	unbounded	by	time	or	space.	The
primordial	description	in	Genesis	of	the	earth	“without	form	and	void”	is	close
to	the	same	idea.	So	is	the	late-twentieth-century	scientific	concept	that	describes
the	universe	(or	“pre-universe”)	as	a	state	of	wobbling	quantum	nothingness
from	which	anything	(or	nothing)	could	have	emerged.	The	“limitless”	was	a
situation	with	no	differentiation,	no	choices	made,	no	orders	given,	no	laws	laid
down	that	would	allow	or	compel	some	things	to	happen	but	not	others.	It	was
the	“limiting”	that	was	responsible	for	differentiation.	Anaximander	did	not,
however,	think	of	the	limitless	only	as	a	situation	that	preexisted	the	world,	that
came	first	chronologically	and	ended	when	the	heavens	and	the	world	emerged.
The	limitless	was	a	fundamental	background	to	eternally	continuing	cycles	of
destruction	and	generation.	He	associated	the	limitless	with	time.

If	Philolaus	can	be	taken	as	an	example,	Pythagoreans	also	believed	that	the
fundamental	principles	limitless	and	limiting	were	both	needed	in	order	for
anything	else	to	exist,	which	raised	a	problem.	The	two	principles	were
discordant	and	opposed	to	one	another;	how	could	they	work	together	to	produce
anything?	There	had	to	be	another	first	principle.	The	limitless	and	the	limiting
“must	necessarily	be	locked	together	by	a	harmony	if	they	are	to	be	held	together
in	a	world.”	Harmony	had	also	to	be	a	“first	principle,”	one	of	the	archai,	maybe
the	most	fundamental	of	all.

The	word	harmonia	was	not	coined	by	Pythagoras	or	Philolaus.	As	early	as
Homer’s	Odyssey,	it	meant	joining	or	fitting	together.	In	carpentry	it	meant	a
wooden	nail	or	peg.	In	music	it	referred	to	the	stringing	of	a	lyre	with	strings	of
different	tension.	The	Pythagoreans	gave	it	new	importance.	In	the	ratios	of



music,	they	felt	they	had	found	an	actual	link	between	harmonia	on	the	everyday
level	and	the	harmonia	that	helped	create	the	universe	and	that	bound	it	together.
They	had	come	to	think	of	the	ratios	of	musical	harmony	as	exemplifying	the
primordial	organizing	principle	of	the	universe.

The	musical	interval	of	the	octave	was	the	“first	consonance,”	which
Philolaus	identified	by	the	name	harmonia.	The	“second	consonance”	was	the
interval	of	a	fifth;	the	next	was	the	interval	of	a	fourth.	Add	the	four	numbers	in
these	ratios	(1,	2,	3,	4)	and	the	result	is	10,	the	perfect	number.*

The	numbers	1,	2,	3,	and	4	had	additional	significance	for	Philolaus.	They
underlay	the	progression	from	point	to	line	to	surface	to	solid:

A	point	(on	the	left)	is	1;	a	line	is	2	(defined	by	two	points,	one	at	each	end);	a	surface	is	3	(defined	by
three	points,	one	at	each	corner);	a	solid	is	4	(defined	by	four	points,	one	at	each	corner).

Later,	Speusippus,	Plato’s	nephew	and	successor	as	head	of	his	Academy,
explained	what	he	understood	Philolaus	to	have	meant:	“The	point	is	the	first
principle	leading	to	magnitude,	the	line	the	second,	the	surface	the	third,	the
solid	the	fourth.”	This	sounded	more	complicated,	but	it	allowed	the	progression
to	apply	to	other	shapes	and	solids	besides	the	triangle	and	pyramid;	for
example,	a	square,	with	four	corners,	led	to	a	cube,	with	eight.

According	to	Philolaus,	the	Pythagoreans	took	the	number	10	and	ran	with
it.	Aristotle	later	commented	that	they	“construct	the	whole	heavens	out	of
numbers.”	Ten	being	the	perfect	number,	there	had	to	be	ten	major	heavenly
bodies,	though	no	one	could	see	ten	in	the	sky.	Also,	said	Philolaus,	there	had	to
be	fire	both	at	the	center	of	the	universe	and	at	the	highest	point,	surrounding
everything,	at	the	outermost	circumference	or	“uppermost	level.”	This	was	partly
observable,	for	the	stars	were	fires	out	on	the	periphery,	but	what	about	the
center?	Here,	according	to	Philolaus,	the	Pythagoreans	made	a	leap	that	set	them
far	ahead	of	their	contemporaries.	The	Earth	could	not	be	the	center	of	the
cosmos,	nor,	for	that	matter,	could	the	Sun.	The	center	had	to	be	a	“central	fire,”
a	fiery	“hearth	of	the	universe”	around	which	the	Earth,	the	Moon,	the	Sun,	the
five	planets,	and	the	stars	revolve.	As	the	scholar	Aëtius—probably	of	the
second	century	A.D.—described	it,	“Unlike	other	philosophers,	who	say	that	the
Earth	is	at	rest,	Philolaus	the	Pythagorean	said	that	it	revolves	about	the	fire	in



an	inclined	circle	like	the	sun	and	moon.”	In	the	centuries	when	no	one—with
the	singular,	brilliant	exception	of	Aristarchus	of	Samos,	who	proposed	a	sun-
centered	cosmos	in	the	third	century	B.C.—was	willing	to	consider	a	moving
Earth	that	was	not	the	center	of	the	cosmos,	scholar	after	scholar	tried	to	show,
or	simply	assumed,	that	the	Pythagoreans	could	not	really	have	meant	this.

Earth,	Moon,	Sun,	five	planets,	and	the	“outer	fire”	(stars)	added	up	to	nine
things	to	“dance	around	the	center.”	Since	there	had	to	be	ten,	the	Pythagoreans
decided	there	was	a	“counter-earth,”	closer	to	the	central	fire	than	the	Earth.	The
central	fire	and	counter-earth	were	never	visible	from	the	Earth,	because	in	their
revolutions	Earth	and	counter-earth	were	always	“opposite”	one	another.
Aristotle	commented,	not	too	approvingly:

Any	agreements	that	they	found	between	number	and	harmony	on
the	one	hand,	and	on	the	other	the	changes	and	divisions	of	the
universe	and	the	whole	order	of	nature,	these	they	collected	and
applied;	and	if	something	was	missing,	they	insisted	on	making
their	system	coherent.	For	instance	they	regarded	the	decad	as
something	perfect,	and	as	embracing	the	whole	nature	of	number,
whence	they	assert	that	the	moving	heavenly	bodies	are	also	ten;
and	since	there	are	only	nine	to	be	seen,	they	invent	the	counter-
earth	as	a	tenth.6

The	central	fire	and	counter-earth	were	certainly	consistent	with	the	Eleatic	view
that	human	sense	perceptions	were	not	trustworthy	for	finding	out	what	was	true
about	the	universe,	for	neither	could	be	perceived	with	any	of	the	five	senses.

The	Pythagoreans	could	have	picked	up	the	idea	that	the	Moon	shone	by
reflected	light	from	Parmenides,	or	perhaps	from	Anaxagoras,	but	according	to
Philolaus	the	light	it	reflected	was	not	the	Sun.	Instead,	both	Moon	and	Sun
caught	the	light	and	heat	of	the	central	fire	and	the	outer	fire.	The	Sun,	like	glass,
filtered	these	through	to	the	Earth.	Living	beings	inhabited	the	Moon	and
probably	the	counter-earth,	though	because	of	their	positioning	the	inhabitants	of
Earth	and	counter-earth	never	saw	one	another.	The	Moon	was	home	to	“living
creatures	and	plants	that	are	bigger	and	fairer	than	ours.	Indeed	the	animals	on	it
are	fifteen	times	as	powerful	and	do	not	excrete,	and	the	day	is	correspondingly
long.”	This	must	have	been	calculated	from	the	fact	that	the	lunar	“day”	lasts
fifteen	Earth	days.	It	would	be	consistent	with	Earth	and	counter-earth	orbiting
the	central	fire	for	Philolaus	to	have	thought	the	Earth	was	a	sphere.	Though	this
does	not	appear	in	any	of	the	fragments,	Aristotle	and	another	later	author,



Alexander	Polyhistor,	wrote	that	Pythagoreans	in	the	late	fifth	century	(that
would	have	included	Philolaus)	and	early	fourth	century	B.C.	believed	that	the
Earth	was	spherical.

Night	and	day	on	Earth,	wrote	Philolaus,	were	produced	by	the	Earth’s	and
Sun’s	positions	relative	to	one	another,	and	the	apparent	rotation	of	the	planets
and	Sun	were	in	part	the	result	of	movement	of	the	Earth.	The	Pythagoreans
were	not	only	the	first	to	realize	that	what	we	see,	from	Earth,	as	the	heavenly
motions	is	a	combination	of	movement	in	opposite	directions;	they	were	also	far
ahead	of	their	contemporaries	in	recognizing	that	the	movement	of	the	Earth
itself	contributes	to	the	picture.

Philolaus	linked	all	of	this	to	the	origin	of	the	cosmos,	when	harmonia
reconciled	the	limitless	and	the	limiting.	The	discovery	of	the	ratios	of	musical
harmony	had	provided	a	brilliant	metaphor	for	the	interaction	of	the	limited	and
the	unlimited.	The	whole	range	of	musical	pitches,	stretching	infinitely	in
opposite	directions,	higher	and	lower,	and	including	an	infinite	number	of
possible	pitches	“between”	the	tones	usually	heard	in	music,	represented	the
unlimited.	When	this	infinite	continuum	of	possible	pitches	was	sorted	out
(limited)	according	to	one	series	of	ratios	and	not	another,	the	result	was	order
and	beauty.	The	infinite	possibilities	still	existed,	higher,	lower,	and	between	the
notes,	but	the	“unlimited”	was	thus	disciplined	and	brought	into	harmony	within
an	order,	a	kosmos.7

The	“first	thing	to	be	harmonized,”	wrote	Philolaus,	was	the	central	fire.	The
central	fire	was	the	number	1;	the	outer	fire,	the	number	2.	The	ratio	2:1
represented	the	musical	octave,	so	an	octave	separated	the	two	extremes	of	the
cosmos.	Some	Pythagoreans	went	so	far	as	to	suggest	that	the	periodic	motions
of	the	nine	orbiting	bodies	around	the	central	fire	were	related	to	the	musical
ratios,	and	their	revolutions	produced	the	“music	of	the	spheres,”	but	that	idea
did	not	appear	in	Philolaus’	book,	at	least	in	the	fragments	that	survived.

Philolaus’	cosmic	arrangement	was	odd	and	imaginative.	In	spite	of
Aristotle’s	disparagement,	it	must	be	admitted	that	the	Pythagoreans	were
clearly	capable	of	independent,	outside-the-box	thinking.	This	was	not
storytelling	or	myth-making,	but	drawing	conclusions	by	deciding	“This	must	be
so,	on	the	basis	of	what	we	already	know	about	the	cosmos	and	the	numerical
rules	by	which	things	work”—a	giant	step	in	the	direction	of	what	has	become
the	time-honored	way	of	developing	scientific	theories.

Philolaus	made	clear	that	Pythagoras	believed	in	and	taught	reincarnation
(transmigration	of	the	soul)	and	that	the	soul	was	immortal,	tied	up	with	a	divine,
universal	soul	to	which	it	might	someday	return.	The	way	Philolaus	applied	the



idea	of	harmonia	to	the	soul	showed	up	in	Plato’s	dialogues	and	in	Aristotle,
who	wrote,	“There	seems	to	be	in	us	a	sort	of	affinity	to	musical	modes	and
rhythms,	which	makes	some	philosophers	say	that	the	soul	is	a	harmonia,	others
that	it	possesses	harmonia.”8

Philolaus	evidently	played	an	important	role	in	forming	Plato’s	impression
of	Pythagoras	and	Pythagorean	teaching,	though	judging	from	the	dialogues	they
never	met	in	person.	Plato	knew	Philolaus’	work	through	members	of	surviving
Pythagorean	communities,	and	from	Socrates.	In	Plato’s	dialogue	Phaedo,	his
characters	are	supposed	to	have	learned	of	the	soul’s	harmonia	from	Philolaus.
Simmias,	who	has	listened	to	him	in	Thebes,	says:

And	in	point	of	fact	I	fancy	that	you	yourself	are	well	aware,
Socrates,	that	we	mostly	hold	a	view	of	this	sort	about	the	soul:
we	regard	the	body	as	held	together	in	a	state	of	tension	by	the
hot,	the	cold,	the	dry	and	the	moist,	and	so	forth,	and	the	soul	as	a
blending	or	harmonia	of	these	in	the	right	and	due	proportion.9

Simmias	must	have	been	listening	to	others	besides	Philolaus,	because	his
interpretation	sounds	more	like	that	of	the	medical	scholar	Alcmaeon	of	Croton.
Alcmaeon’s	lifetime	may	have	overlapped	Pythagoras’,	and	he	was	probably	a
Pythagorean	himself.	If	not,	he	was	close	to	them	and	clearly	reflected
Pythagorean	thinking	about	opposites	when	he	wrote,	“What	preserves	health	is
an	equilibrium	of	the	powers	.	.	.	health	is	a	balanced	mixture	of	opposites.”10

Because	a	body	could	go	so	out	of	synchrony	in	sickness	and	death	as	to
lose	any	suggestion	of	harmony,	Plato’s	Simmias	worried	that	his	soul	could	not
be	immortal.	Echecrates,	another	Pythagorean	character	in	the	dialogue,	also
comments	uneasily,

This	teaching	that	the	soul	is	a	kind	of	harmonia	has	had,	and	still
has,	a	strong	hold	on	me,	and	when	you	mentioned	it	I	was
reminded	that	I	too	had	believed	it.	Now,	it	is	as	if	I	were	starting
at	the	beginning	again.	I	terribly	need	another	argument	that	can
persuade	me	that	the	souls	of	the	dead	do	not	die	with	them.11

The	argument	Echecrates	and	Simmias	needed	to	hear—the	best	Pythagorean
shoring	up	of	their	faltering	faith—had	appeared	earlier	in	the	same	dialogue
when	Socrates	expressed	surprise	that	Simmias	and	his	friend	Cebes,	both
described	as	students	of	Philolaus,	were	ignorant	of	Philolaus’	teaching	about



suicide.	Socrates	admits	that	this	is	part	of	a	“secret	doctrine”:	We	are	put	into
the	world	by	the	gods,	who	take	care	of	us,	and	we	must	not	leave	the	world
until	the	moment	they	have	chosen,	even	though	death,	when	finally	permitted,
is	like	getting	out	of	prison.	A	Philolaus	fragment	in	the	writing	of	the	early
Christian	scholar	Clement	of	Alexandria	echoes	the	idea:	“This	Pythagorean
Philolaus	says:	‘The	ancient	theological	writers	and	prophets	also	bear	witness
that	the	soul	is	yoked	to	the	body	as	a	punishment,	and	buried	in	it	as	in	a	tomb.’
”12	Unfortunately,	souls	had	a	tendency	to	become	too	fond	of	bodily	existence.
Plato	attempted	to	put	this	issue	in	its	proper	perspective	in	one	of	the	most
Pythagorean	statements	of	his	Phaedo:

[The	soul	that	is	not	completely	purified]	has	always	associated
with	the	body	and	tended	it,	filled	with	its	lusts	and	so	seduced	by
its	passions	and	pleasures	as	to	think	that	nothing	is	real	except
what	is	bodily,	what	can	be	touched	and	seen	and	eaten	and	made
to	serve	sexual	enjoyment.13

Though	Plato’s	characters	Simmias,	Echecrates,	and	Cebes	had	misgivings,
Philolaus,	Plato,	Socrates,	the	Pythagoreans	before	them—including	Alcmaeon
—and	Pythagoras	himself	all	clearly	believed	that	souls	were	immortal.	Bodily
health	was	harmony;	sickness	and	death	a	breakup	of	that	harmony,	but	this
physical	harmony	was	not	the	ultimate	harmony.	There	was	a	universal	harmony
to	which	every	Pythagorean	aspired	to	escape	from	the	tedious	round	of	earthly
reincarnations.	The	soul	was	set	in	the	body	by	means	of	numbers	and	an
immortal	harmonia,	and	its	quest	for	the	divine	level	was	dependent	on	number.
Plato’s	thinking	took	off	from	there.

Most	of	the	ancient	world	regarded	natural	phenomena	as	beyond	human
understanding	or	explanation,	subject	to	the	whims	of	capricious	deities	and	best
dealt	with	in	imaginative	stories.	Philolaus	referred	to	the	central	fire	as	the
“home	of	Zeus,”	perhaps	to	make	his	contemporaries	feel	comfortable	with	the
notion.	But	what	we	learn	from	him	is	that	the	first	Pythagoreans,	led	by	a	man
who	was,	by	some	descriptions,	more	shaman	than	scientist	or	mathematician,
were	trying	a	new	way	of	securing	a	foothold	on	the	climb	to	understanding
nature	and	the	universe,	through	numbers.	The	earliest	pre-Socratic	philosophers
—Thales,	Anaximander,	Anaximenes—for	all	their	yearning	to	get	at	the	roots
of	things	did	not	connect	or	confirm	their	philosophical	ideas	with	numbers	or
mathematics.	The	Mesopotamians	of	the	First	Babylonian	Dynasty	had	found
numbers	useful	and	enjoyed	using	impressive	mathematics	in	exercises	that	had



no	practical	applications,	but	apparently	did	not	think	that	numbers	and
mathematics	were	a	way	to	reach	a	profounder,	all-encompassing	truth.
Philolaus	wrote	that	“nature	itself	admits	of	divine	and	not	of	human
knowledge,”	but	he	was	convinced	that	number	relationships	underlay	the	origin
of	the	universe	and	the	soul’s	relationship	with	the	divine,	making	it	possible	for
humans	to	figure	such	things	out.	This	insight	was	a	fresh	departure,	a	sea
change	of	enormous	proportions,	and	Pythagoreans	such	as	Philolaus	regarded
the	relationship	of	rational	humans	to	a	rational	universe	with	awe.	The	kinship
was	reflected	in	a	doctrine	of	the	unity	of	all	being.	A	fragment	in	Against	the
Mathematicians,	by	the	skeptic	philosopher	and	physician	Sextus	Empiricus
(second–third	century	A.D.)	states:	“The	Pythagoreans	say	that	reason	is	the
criterion	of	truth—not	reason	in	general,	but	mathematical	reason,	as	Philolaus
said,	which,	inasmuch	as	it	considers	the	nature	of	the	universe,	has	a	certain
affinity	to	it	(for	like	is	naturally	apprehended	by	like).”

Bust	of	Plato

That	“certain	affinity”—the	fact	that	human	mathematical	reasoning	does
match	up	with	what	is	really	happening	in	nature—was	not	something	that	the
Pythagoreans,	or	Philolaus,	or	anyone	since	them	could	or	can	explain.	It	was
enough	to	know	that	numbers	were	tied	in	a	fundamental	way	to	the	origin	and
nature	of	the	cosmos.



CHAPTER	8

Plato’s	Search	for	Pythagoras
Fourth	Century	B.C.

IN	ABOUT	THE	YEAR	389	B.C.,	Plato	left	his	home	in	Athens	and	boarded	a	ship
setting	sail	westward	into	the	Ionian	Sea.	His	destination	was	Tarentum,	one	of
the	old	colonial	cities	of	southern	Italy,	in	the	coastland	known	to	him	as	Megale
Hellas.	He	was	going	in	search	of	Pythagoras.1

In	the	110	years	since	his	death,	Pythagoras	had	become	the	stuff	of	legend.
Some	believed	he	had	been	the	wisest	man	who	ever	lived,	almost	a	god.	There
were	stories	that	a	wealth	of	precious	knowledge	had	perished	with	him	and	his
followers	in	upheavals	that	had	destroyed	their	communities	in	500	and	454	B.C.
Though	no	one	alive	was	old	enough	to	have	known	Pythagoras,	Plato	had	heard
that	in	Megale	Hellas	there	were	still	men	calling	themselves	Pythagoreans.	So,
in	his	thirty-eighth	year,	he	sailed	to	the	shores	where	Pythagoras	at	about	that
same	age	had	preceded	him	and	walked	and	taught	and	died.	The	stones	of	the
promontories,	the	pleasant	coastlines,	the	very	dust	of	the	roads,	ought	to
remember	him.

Plato’s	investigation	began	in	Tarentum,	on	a	small	peninsula	at	the	western
extreme	of	the	instep	of	the	Italian	boot,	the	first	port	of	call	for	ships	crossing
from	Greece.*	The	only	story	connecting	Pythagoras	with	that	city	was	that	he
had	convinced	a	bull	there	not	to	eat	beans,	but	Tarentum	had	been	far	enough
from	Croton	for	refugees	from	the	fifth-century	attacks	to	have	settled,	felt
reasonably	safe,	and	started	their	own	exile	Pythagorean	community.	It	had
survived,	and	Plato	knew	that	its	most	prominent	member	now	was	Archytas	of
Tarentum—“Archytas	the	Pythagorean.”

In	Archytas,	Plato	found	a	man	who	embodied	Pythagorean	ideals	both	in
his	lifestyle	and	his	studies.	Archytas	was	an	outstanding	scholar	and
mathematician	working	in	the	Pythagorean	mathematici	tradition,	and	also	an
able	civic	leader.	Meeting	him	must	have	confirmed	for	Plato	that	the	years	of
Pythagorean	rule	in	Megale	Hellas	had	been	an	era	of	peace	and	stability,
strengthening	his	conviction	that	men	who	knew	philosophy	and	mathematics
made	splendid	rulers.	Plato	and	Archytas	were	within	a	year	of	each	other	in	age.
The	visit	in	389	was	the	first	of	several	during	which	Plato	conversed	with	him



and	his	Pythagorean	friends,	absorbing	knowledge	and	information	that	only	a
handful	of	men	in	the	world	could	have	given	him.	Megale	Hellas	would
continue	to	draw	Plato,	not	only	because	of	Archytas.

At	the	time	of	Plato’s	first	visit,	the	southern	Italian	cities	were	living	under
the	encroaching	shadow	of	a	formidable	enemy—Dionysius,	tyrant	of	Syracuse,
close	across	the	water	in	Sicily.	“Tyrant”	did	not	necessarily	have	negative
connotations	then.	The	term	meant	a	ruler	whose	claim	to	power	was	not
hereditary,	and,	indeed,	Dionysius	had	begun	in	the	lowly	position	of	clerk	in	a
city	office.	However,	he	also	fit	the	later,	ugly	definition.	Tactics	that	made	him
hugely	successful	shocked	even	his	contemporaries.	Dionysius	reigned	for
nearly	forty	years,	preserving	Syracuse’s	independence	during	repeated
invasions	while	most	of	the	rest	of	Sicily	fell	to	the	Carthaginians	from	North
Africa.	Syracuse	became	one	of	the	most	powerful	cities	in	the	world,	her	fleet
for	a	time	the	strongest	in	the	Mediterranean.	It	was	certain	that	if	Dionysius
chose	to	move	against	his	Italian	neighbors,	no	one	could	stop	him.	Plato	had
come	to	an	unstable,	dangerous	region,	but	instead	of	heading	directly	back	to
safer	Athens,	he	decided	to	experience	at	first	hand	the	court	of	a	powerful,
gifted	ruler.	Here	was	no	theoretical	governance.	It	was	the	real	thing.

Dionysius’	capital	was,	or	was	in	the	process	of	becoming,	a	splendid,	well-
fortified	city,	built	strategically	on	an	island	separated	from	the	mainland	of
Sicily	by	a	narrow	swath	of	water.	There	was	a	Pythagorean	community	in
Syracuse,	begun	like	the	one	in	Tarentum	by	fifth-century	Pythagoreans	who	in
this	case	had	fled	west	across	the	Gulf	of	Messina,	but	Plato	was	more	interested
in	the	court	of	Dionysius.	He	was	becoming	increasingly	intrigued	with	public
affairs,	and	he	seems	to	have	enjoyed—perhaps	too	well	for	his	own	good—
rubbing	shoulders	with	powerful	courtiers	among	whom	he	felt	more	than	able
to	hold	his	own.	On	this	first	visit,	Plato	met	one	of	the	most	influential	men	in
Syracuse,	the	tyrant’s	brother-in-law	Dion.	Plato	was	impressed	with	Dion	.	.	.
and	Dion	with	Plato.

Not	long	after	Plato’s	visit,	Dionysius’	invading	forces	wreaked	devastation
on	the	south	Italian	cities,	and	the	entire	region	fell	to	Syracuse.	In	terms	of	the
map,	the	football	had	kicked	the	boot.	Meanwhile,	back	in	Athens,	Plato	went	on
to	establish	his	Academy,	adopting	a	“Pythagorean	curriculum”	that	he	had
learned	from	Archytas:	a	“quadrivium”	of	arithmetic,	geometry,	astronomy,	and
music.	The	inclusion	of	music	was	an	exceptionally	Pythagorean	touch.

The	ruthless	Dionysius	died	in	367,	survived	by	his	son,	Dionysius	the
Younger.	Unfortunately	for	Syracuse—though	perhaps	to	the	relief	of	many	in
the	region—the	son	was	a	much	less	able	leader	than	the	father.	Plato’s



acquaintance	Dion,	the	new	ruler’s	uncle,	was	dubious	about	his	nephew’s
ability	to	keep	Syracuse	as	dominant	as	the	old	tyrant	had	left	it.	For	whatever
well-meaning	or	devious	reasons	(history	records	the	events	but	not	the
motivation)	Dion	decided	to	improve	his	nephew	by	seeing	to	his	belated
education.	The	father	had	been	an	innately	brilliant	leader	with	literary
pretensions	(though	his	writing	was	widely	judged	to	be	embarrassingly	bad),
but	the	son	needed	assistance	if	he	was	to	rule	effectively	and	continue	to
frustrate	the	Carthaginians’	desire	to	complete	their	takeover	of	Sicily.	Dion
recalled	his	conversations	with	Plato	twenty	years	earlier	and	some	of	Plato’s
dialogues	that	he	had	read	since	then,	in	which	Plato	had	been	developing	the
idea	that	men	like	Pythagoras	and	Archytas—philosophers	for	whom	the
“quadrivium”	was	bread	and	butter—should	be	the	political	rulers.	To	fill	such
shoes	and	be	a	“philosopher	king,”	as	Plato	coined	the	term,	Dionysius	the
Younger	needed	training	only	Plato	could	provide.	Dion	decided	to	try	to
convince	Plato,	by	then	sixty-one	and	famous	in	Athens	and	far	beyond,	to
return	to	Syracuse	and	tutor	him.

In	spite	of	what	must	have	been	a	yearning	to	foster	a	philosopher	king	in	a
world	power	like	Syracuse,	Plato	was	not	initially	keen	about	Dion’s	proposal,
thinking	it	would	be	a	risky	undertaking	and	unlikely	to	succeed.	Archytas
convinced	Plato	to	change	his	mind.	Partly	tempted	by	the	opportunity	for	more
conversations	with	Archytas,	Plato	sailed	for	Syracuse.	For	a	while,	he	was	on
sufficiently	good	terms	with	Dionysius	the	Younger	to	do	some	networking	on
Archytas’	behalf.	A	friendly	relationship	between	Dionysius	and	Archytas	was
advantageous	for	the	city	of	Tarentum.	However,	Dionysius	did	not	study	with
Plato	long.	Before	the	year	366	ended,	he	banished	Dion;	Plato,	suspecting	that
his	own	best	interests	did	not	lie	in	this	court,	prudently	took	his	leave.

Yet	five	or	six	years	later,	in	361–360	B.C.,	Plato	was	back,	invited	by	the
tyrant	himself.	Dionysius	sent	an	emissary	named	Archedemus,	a	friend	of
Archytas,	on	a	special	ship	to	summon	Plato.	The	banished	Dion	also	had	a
clandestine	hand	in	his	return.	He	asked	Plato	to	engineer	a	reconciliation
between	him	and	Dionysius.

Plato	arrived	and	Dionysius’	lessons	resumed,	but	any	hope	of	transforming
Dionysius	into	a	philosopher	king	was,	again,	short-lived.	It	cannot	have	helped
that	Plato	was	at	court	partly	at	the	behest	of	the	banished	Dion.	Plato	was	soon
not	only	out	of	favor	but	in	danger	for	his	life.	He	got	word	to	Archytas,	and	that
resourceful	man,	using	the	influence	he	retained	with	Dionysius,	sent	an
ambassador	with	a	ship	from	Tarentum	and	persuaded	the	tyrant	to	release	Plato.
Afterward	Archytas	was	not	only	known	as	“Archytas	of	Tarentum”	or	“the
Pythagorean”	but	also	as	“Archytas	who	saved	Plato’s	life.”



Pythagorean”	but	also	as	“Archytas	who	saved	Plato’s	life.”
Dion	captured	Syracuse	three	years	later	and	was	assassinated	three	years

after	that	at	the	behest	of	another	Syracusan	acquaintance	of	Plato.	Dionysius
regained	control	for	a	short	period,	but	he	seems	never	to	have	had	much	talent
or	inclination	for	ruling,	and	it	may	have	come	as	a	relief	to	him	in	344	when	the
Corinthian	general	Timoleon	compelled	him	to	surrender	and	retire	to	Corinth.
There	he	became	a	language	teacher.	Perhaps	Plato’s	efforts	had	not	been
entirely	wasted	and	a	former	tyrant	was	well	qualified	to	teach.

In	Corinth,	Dionysius	met	Aristotle’s	pupil	Aristoxenus,	who	was	collecting
information	about	Pythagoras	and	the	Pythagoreans.	Aristoxenus	would	turn	out
to	be	one	of	the	earliest	and	most	valuable	sources,	for	Tarentum	was	his
birthplace	and	he	said	his	father	knew	Archytas.	From	Dionysius,	who	had	been
rather	useless	at	nearly	everything	else,	Aristoxenus	was	able	to	glean	firsthand
knowledge	about	Pythagoreans	in	the	fourth	century	in	Syracuse,	not	far	from
the	area	where	the	society	had	originated.

As	Dionysius	told	the	story	to	Aristoxenus,	some	of	his	courtiers	in	Syracuse
had	spoken	disparagingly	of	the	local	Pythagoreans	as	arrogant,	pious	fakes
whose	rumored	moral	strength	and	superiority	would	evaporate	in	a	crisis.	Other
courtiers	disagreed,	and	the	two	sides	contrived	a	way	to	settle	the	dispute.
Would	one	Pythagorean	be	willing	to	stake	his	life	on	the	dependability	and
faithfulness	of	another?	Would	the	other’s	faithfulness	and	dependability—to	the
death—prove	deserving	of	such	trust?

The	courtiers	accused	a	man	named	Phintias,	a	member	of	the	local
Pythagorean	community,	of	plotting	against	Dionysius.	When	Dionysius
sentenced	him	to	death,	Phintias	asked	for	a	stay	of	execution	for	the	remainder
of	the	day,	long	enough	to	settle	his	affairs.	It	was	a	Pythagorean	custom,
established	by	Pythagoras	himself,	to	keep	no	private	property	but	own	all	things
in	common.	Phintias	was	the	oldest	among	the	local	brotherhood	and	chiefly	in
charge	of	the	management	of	finances.	Dionysius	and	his	court,	following	their
plan,	allowed	him	to	send	for	another	Pythagorean,	Damon,	to	remain	as	hostage
until	his	return.	To	the	astonishment	of	the	court,	Damon	willingly	came	to	stand
as	personal	surety	for	Phintias.	Phintias	departed,	and	the	courtiers—sure	they
had	seen	the	last	of	him—sneered	at	Damon	for	being	such	a	trusting	fool.	But
the	faithful	Phintias	returned	at	sunset	to	face	his	death	rather	than	leave	his
friend	to	be	executed	in	his	stead.	“All	present	were	astonished	and	subdued,”
reported	Dionysius,	who	was	so	impressed	that	he	embraced	the	two	men	and
asked	to	be	allowed	to	join	their	bond	of	friendship.	Not	surprisingly,	“they
would	by	no	means	consent	to	anything	of	the	kind.”	What	happened	to	them
then	is	not	known.	Plato,	so	often	at	court	in	Syracuse,	also	likely	heard	about
this	incident,	but	he	never	wrote	about	it.



this	incident,	but	he	never	wrote	about	it.
Plato’s	activities	in	Megale	Hellas	went	beyond	learning	about	Pythagoras

and	Pythagorean	teachings,	experiencing	day-to-day	reality	in	a	tyrant’s	court,
and	abortive	attempts	to	tutor	Dionysius.	He	helped	Archytas	strengthen	his
position	in	Tarentum	as	a	minor	philosopher	king.	Archytas	went	on	to	play	a
prominent	role	in	political	affairs	among	the	cities	of	Megale	Hellas	and	Sicily,
in	accordance	with	the	Pythagorean	tradition	of	wise	and	able	involvement	in
public	service.

IN	A	SEARCH	for	the	real	Pythagoras	and	the	Pythagoreans	and	what	they	believed
and	taught,	the	information	about	Archytas,	Plato,	and	Dionysius	the	Younger
provides	valuable	clues.	Most	significantly,	it	reveals	a	link	between	Plato	and	a
Pythagorean	community	that	still	existed	in	the	fourth	century	B.C.	in	the	region
where	Pythagoras	and	his	followers	had	had	their	golden	age	in	the	late	sixth
century.	Plato	knew,	and	knew	of,	other	fourth-century	Pythagoreans,	but	after
his	visits	to	Tarentum,	when	he	thought	“Pythagorean”	he	was	probably	mostly
thinking	of	Archytas	and	his	associates.	When	he	thought	“Pythagorean
mathematics	and	learning”	he	was	thinking	of	the	mathematics	and	learning	of
Archytas.

What	was	he	like,	this	man	who	was,	for	Plato,	the	best	available	evidence
of	what	it	meant	to	be	Pythagorean	and	what	“Pythagorean	knowledge”	was?
What	could	Plato	have	learned	from	him	about	Pythagoras	and	what
Pythagorean	teaching	had	been	more	than	a	century	earlier?

Archytas	was	known	to	be	a	mild-mannered	man	who	ruled	in	Tarentum
through	a	democratic	set	of	laws—information	deduced	from	the	news	that	these
were	not	always	obeyed:	Though	the	“laws”	said	a	man	should	serve	no	more
than	one	year,	the	city	“elected”	Archytas	seven	times	to	the	office	of	strategos,
or	ruling	general.2	Aristoxenus	wrote	that	Archytas	was	never	defeated	as	a
general	except	once,	when	his	political	opponents	forced	him	to	resign	and	the
enemy	immediately	captured	his	men.	Archytas,	said	Aristoxenus—whose
father,	he	claimed,	had	known	the	man	in	person—was	“admired	for	excellence
of	every	sort.”

There	can	be	no	doubt	that	as	a	scholar	Archytas	lived	by	the	great	insight
that	set	the	Pythagoreans	apart	from	other	ancient	thinkers:	that	numbers	and
number	relationships	were	the	key	to	vast	knowledge	about	the	universe.
Archytas	was	a	rigorous	mathematician	who	solved	an	infamous	problem	in
Greek	mathematics	known	as	the	Delian	problem,	or	doubling	a	cube,	that	is,
creating	a	new	cube	twice	the	volume	of	the	first.	Archytas’	solution	was



sophisticated,	requiring	new	geometry	using	three	dimensions—“solid”
geometry—and	involving	the	idea	of	movement.3*

Diagram	showing	how	Archytas	solved	the	Delian	problem,	evidence	of	how	advanced	Pythagorean
mathematics	and	geometry	had	become	in	little	more	than	one	century.†

Viewing	the	world	through	the	eyes	of	his	Pythagorean	forebears,	Archytas
could	not	avoid	pondering	the	possible	hidden,	underlying	numbers	and
geometry.	“Why	are	the	parts	of	plants	and	animals	(except	for	the	organs)	all
round?”	he	asked,	“of	plants,	the	stems	and	branches;	of	animals,	the	legs,
thighs,	arms,	thorax?	Neither	the	whole	animal	nor	any	part	is	triangular	or
polygonal.”	He	suspected	there	was	a	“proportion	of	equality	in	natural	motion,
since	all	things	move	proportionately,	and	this	is	the	only	motion	that	returns
back	to	itself,	so	that	when	it	occurs	it	produces	circles	and	rounded	curves.”

Later	scholars,	among	them	Euclid	and	Ptolemy,	agreed	that	Archytas’
precise	work	in	the	mathematics	of	music	was	fundamentally	linked	with	the
earliest	Pythagorean	mathematics	and	music	theory.4	Archytas	extended	the
study	of	numerical	ratios	between	notes	of	the	scale	and	showed	that	if	you
defined	a	whole	tone	as	the	interval	separating	the	fourth	and	fifth	notes	of	the
scale	(such	as	F	and	G	in	a	scale	beginning	with	C),	as	Greek	music	theorists
were	doing,	then	a	whole	tone	could	not	be	divided	into	two	equal	halves.*	This
had	dramatic	implications,	for	it	was	an	example	of	something	obviously	present
in	the	real	world	that	could	not	be	measured	precisely.	A	different	example,
discovered	in	the	right	triangle,	had	famously	caused	the	first	Pythagoreans	to
have	a	devastating	crisis	of	faith	in	the	rationality	of	the	universe,	but
incommensurability	seemed	no	longer	to	disturb	Pythagoreans	like	Archytas	in
the	fourth	century	B.C.

In	astronomy,	Archytas	puzzled	over	the	question	of	whether	the	cosmos	is



infinitely	large,	and	was	notorious	for	asking:	“If	I	come	to	the	limit	of	the
heavens,	can	I	extend	my	arm	or	my	staff	outside,	or	not?”	He	replied	that
whatever	the	answer—yea	or	nay—if	he	were	out	there	performing	this
experiment,	he	could	not	actually	be	at	the	limit	of	the	heavens.	If	he	could	not
extend	his	arm	or	staff	farther,	something	beyond	the	supposed	limit	had	to	be
stopping	him.5

In	archaic-sounding	litanies,	the	first	Pythagoreans	had	asked	“What	are	the
isles	of	the	blessed?”	and	answered	“The	Sun	and	the	Moon.”	Archytas	brought
this	up-to-date	in	a	more	sophisticated	catechism,	asking	“What	is	calm?”	and
answering	as	a	parent	might	answer	a	child,	with	an	example:	“What	is	a	man?”
“Daddy	is	a	man.”	Similarly,	Archytas’	reply	to	“What	is	calm?”	was
“Smoothness	of	the	sea.”	His	catechism,	however,	implied	more	than	“example
answers,”	for	he	liked	to	connect	the	specific	with	the	general,	reflecting	the
Pythagorean	doctrine	of	the	unity	of	all	being,	and	he	enjoyed	thinking	about	the
relationship	between	the	whole	and	the	parts	or	particulars.	His	questions	and
answers	about	the	weather	and	the	sea	were	particular	cases	of	deeper	questions
about	smoothness	and	motion.	The	problem	of	dividing	a	whole	tone	into	equal
halves	was	a	particular	case	of	a	mathematical	discovery	about	ratios	that	could
not	be	equally	divided.	His	observations	about	the	roundness	in	trees,	plants,	and
animals	were	particular	manifestations	of	a	“proportion	of	equality	in	natural
motion.”	Archytas	was	convinced	of	a	tight	connection	between	understanding
the	universe,	or	anything	else,	as	a	whole	and	understanding	the	details.	Plato
wrote	in	his	Republic	that	this	paragraph	from	Archytas	was	“the	teaching	of	the
Pythagoreans”:

The	students	of	mathematics	[by	this,	Archytas	meant	students
among	the	Pythagoreans]	seem	to	me	to	have	attained	excellent
knowledge,	and	it	is	not	surprising	that	they	have	correctly
understood	how	things	stand	in	each	matter.	For	since	they	have
obtained	knowledge	of	the	nature	of	the	universe	as	a	whole,	they
will	have	come	to	have	a	good	view	of	how	each	thing	stands	in
particular.	Concerning	the	speed	and	risings	and	settings	of	the
heavenly	bodies	they	have	handed	down	to	us	clear	knowledge,
concerning	geometry	and	numbers,	and	not	least	concerning
music.	For	these	studies	seem	to	be	sisters.

When	Archytas	wrote	about	such	matters	as	smoothness	and	non-
smoothness	of	the	sea	he	was	reflecting	another	Pythagorean	traditional	favorite
—opposites	(smoothness/lack	of	smoothness;	motion/lack	of	motion)—and	for



—opposites	(smoothness/lack	of	smoothness;	motion/lack	of	motion)—and	for
him	that	line	of	thought	inevitably	led	back	to	thinking	about	infinity.	Can
something	be	infinitely	calm?	Or	infinitely	uncalm?	Or	infinitely	smooth;
infinitely	rough?

As	a	politician	and	general,	Archytas	was	convinced	of	what	he	was	sure	his
Pythagorean	forebears	had	demonstrated:	The	unity	of	all	things	had	to	include
ethics	and	politics.	The	value	of	mathematics	extended	to	the	political	arena.	In
the	following	fragment,	“reason”	could	also	be	translated	as	“calculation.”	To	a
Pythagorean	like	Archytas,	the	two	meanings	were	probably	synonymous.

When	reason/calculation	is	discovered,	it	puts	an	end	to	civil
strife	and	reinforces	concord.	Where	this	is	present,	greed
disappears	and	is	replaced	by	fairness.	It	is	by	reason/calculation
that	we	are	able	to	come	to	terms	in	dealings	with	one	another.	By
this	means	do	the	poor	receive	from	the	affluent	and	the	rich	give
to	the	needy,	both	parties	convinced	that	by	this	they	have	what	is
fair.

Plato,	of	course,	could	not	have	agreed	more.	The	ability	to	use	“reason”	or
“calculation”	would	make	a	philosopher	king	a	superbly	able	ruler.

For	Archytas,	the	concept	of	unity	meant	he	should	also	apply	a	Pythagorean
search	for	deeper	levels	of	mathematical	understanding	to	optics,	physical
acoustics,	and	mechanics.	His	is	the	earliest	surviving	explanation	of	sound	by
“impact,”	with	stronger	impacts	giving	higher	pitches,	but	he	nodded	to	his
Pythagorean	forebears	by	insisting	this	was	a	theory	that	had	been	handed	down
to	him.	By	“impact,”	Archytas	meant	impact	on	the	air—whipping	a	stick
through	the	air,	playing	a	high	note	on	a	pipe	by	making	the	pipe	as	short	as
possible	(making	a	stronger	pressure	on	the	air,	he	thought),	and	the	sound	of	the
wind	whistling	higher	pitches	as	its	speed	increased,	or	a	“bull-roarer.”	That	last
was	an	instrument	used	in	the	mystery	religions,	a	flat	piece	of	wood	on	the	end
of	a	rope.	Whirling	it	around	in	the	air	like	a	giant	slingshot	produced	a	fearsome
howling	sound;	the	faster	the	whirling	the	higher	the	pitch.6

One	of	the	most	widely	known,	influential,	and	enduring	Pythagorean	ideas
passed	down	through	Archytas	to	Plato	was	the	concept	of	the	“music	of	the
spheres,”	the	music	Archytas	and	his	Pythagorean	forebears	thought	the	planets
made	as	they	rushed	through	the	heavens.	Here	is	Archytas’	explanation	for	why
humans	never	hear	it:

Many	sounds	cannot	be	recognized	by	our	nature,	some	because
of	the	weakness	of	the	blow	(impact),	some	because	of	the	great



of	the	weakness	of	the	blow	(impact),	some	because	of	the	great
distance	from	us,	and	some	because	their	magnitude	exceeds	what
can	fit	into	our	hearing,	as	when	one	pours	too	much	into	narrow
mouthed	vessels	and	nothing	goes	in.

According	to	Pythagorean	tradition,	only	Pythagoras	could	hear	this	music.
Archytas	was	a	generous	man,	kind	to	slaves	and	children.	He	invented	toys

and	gadgets,	including	a	wooden	bird	(a	duck	or	a	dove)	that	could	fly.	Aristotle
was	impressed	by	“Archytas’	rattle,”	“which	they	give	to	children	so	that	by
using	it	they	may	refrain	from	breaking	things	about	the	house;	for	young	things
cannot	keep	still.”7

THIS,	THEN,	WAS	the	science,	mathematics,	music	theory,	and	political	philosophy
that	Plato,	from	Archytas,	learned	to	think	of	as	Pythagorean.	Through	Plato,
much	of	the	image	of	Pythagoras	and	Pythagorean	thought	in	Western
civilization	is	traceable	to	Archytas’	window	on	Pythagoras.

How	unclouded	was	this	window?	Archytas	regarded	himself	as	an
authentic	Pythagorean,	true	to	the	earliest	traditions	and	teachings.	In	his	era,
oral	accounts	could	still	be	accurate,	especially	in	a	continuing	community	that
considered	it	vitally	important	to	keep	an	ancient	memory	alive	and	clear.	In
many	ways,	Archytas	was	probably	a	good	reflection	of	what	it	had	meant	to	be
Pythagorean	when	Pythagoras	himself	walked	the	paths	of	Megale	Hellas.
However,	he	was	one	of	the	mathematici,	the	school	of	Pythagoreanism	that
believed	following	in	Pythagoras’	footsteps	meant	diligently	seeking	and
increasing	knowledge.	The	Pythagorean	ideals	that	underlay	Archytas’	thought
and	work	led	him	to	newer	discoveries.	He	was	among	the	great	scholars	and
mathematicians	of	his	era,	by	reputation	the	teacher	of	the	mathematician
Eudoxus.	If	Archytas	had	focused	only	on	the	knowledge	of	the	first
Pythagoreans,	this	would	have	been	impossible.

Plato	himself	provided	a	window	through	which	we	view	Archytas.	No
matter	how	accurately	Archytas	reflected	Pythagoras	and	Pythagorean	thinking,
we	see	him	through	Plato’s	eyes	and	with	Plato’s	mind,	the	eyes	and	mind	of
one	of	the	most	creative	thinkers	in	all	history.	It	is	in	the	nature	of	such	a	man,
if	he	is	impressed	with	an	idea,	to	take	the	ball	and	run	with	it—to	say,	“This	is,
of	course,	what	you	mean,”	and	restate	someone	else’s	good	idea	with	a	spin	that
makes	it	absolutely	brilliant—and	his	own,	not	the	original.	Assuming	Archytas
was	an	exemplary	Pythagorean,	when	Plato	got	the	ball	to	the	other	end	of	the
field,	was	it	anything	like	the	same	ball	he	had	caught	in	the	pass	from	Archytas?



That	is	one	of	the	most	debated	questions	in	all	the	long	history	of	those	who
have	yearned	to	know	what	Pythagoras	himself,	and	Pythagoreans	before	Plato,
really	discovered	and	thought.

On	one	significant	issue,	Plato	disagreed	with	Archytas,	and	that
disagreement	is	a	welcome	clue,	a	clear	indication	of	something	in	pre-Platonic
Pythagorean	thinking,	undiluted	by	Plato,	that	differed	from	Plato.	Archytas,
Plato	complained,	was	too	concerned	with	what	one	could	see	and	hear	and
touch,	and	with	searching	for	mathematics	and	numbers	to	explain	it.	For	Plato,
the	goal	of	studying	mathematics	was	to	turn	away	from	experience	that	humans
have	through	their	five	senses	to	a	search	for	abstract	“form,”	out	of	reach	of
sensory	perception.	Numbers	and	mathematical	understanding	were	a	venture
into	abstract	form,	but	not	the	same,	he	thought,	as	his	own	concept	of	the
ultimate	understanding	of	“the	beautiful	and	the	good.”	This	difference,	in
Plato’s	view,	made	Archytas	an	inadequate	philosopher	and	himself	a	better	one.

PLATO’S	KNOWLEDGE	ABOUT	Pythagoras	and	Pythagoreans	was	not	confined	to
what	he	learned	through	Archytas.	There	is	evidence	in	his	dialogues	that	he
heard	about	them	from	Socrates;	also,	Plato	and	Archytas	both	knew	of
Philolaus.	If	the	characters	in	Plato’s	dialogue	Phaedo	are	not	entirely	fictional,
he	was	acquainted	with	contemporaries	who	were	“disciples	of	Philolaus	and
Eurytus”	in	Phlius,	a	community	west	of	Corinth,	as	well	as	with	Echecrates,
who	speaks	for	them	in	the	dialogue,	and	Simmias	and	Cebes.	Plato	also	knew
about	Lysis	of	Tarentum	who,	like	Philolaus,	had	emigrated	to	Thebes.	The
Pythagorean	community	there	was	apparently	still	in	existence	in	Plato’s	time.

Plato	could	not	have	avoided	also	knowing	about	acusmatici	Pythagoreans
who	did	not	agree	that	scholars	like	Archytas	were	Pythagoreans.8	The	Greek
public	in	the	fourth	century	B.C.	generally	failed	to	recognize	a	distinction
between	mathematici	and	acusmatici	and	lumped	all	“Pythagorists”	together	as
an	eccentric	lot.	Athenian	comic	dramatists	lampooned	them	as	unwashed,
secretive,	arrogant	characters	who	abstained	from	meat	and	wine	and	went	about
ragged	and	barefoot.	Plato’s	pupils,	educated	at	his	Academy	in	the
“Pythagorean	sister	sciences”—the	quadrivium	of	arithmetic,	geometry,
astronomy,	and	music—spoke	of	their	philosophy	and	that	of	Pythagoras	as	one
and	the	same	and	featured	him	in	their	books.	They	were	certainly	more	in	the
mathematici	tradition	than	in	the	acusmatici,	but	they	nevertheless	were	the
targets	of	the	same	jibes.

The	unshakable	conviction	of	the	men	who	inspired	the	caricature—that
they	were	following	in	the	authentic	footsteps	of	Pythagoras	and	preserving	a



precious	tradition—caused	some	of	their	contemporaries	to	feel,	a	bit
uncomfortably,	that	even	the	most	eccentric	were	favored	by	the	gods	and	privy
to	mystical	secrets.	Antiphanes,	in	his	play	Tarentini	(the	title	connects	it	with
Tarentum)	spoke	of	Pythagoras	himself	as	“thrice	blessed,”	and	Aristophon	had
one	of	his	characters	report:

He	said	that	he	had	gone	down	to	visit	those	below	in	their	daily
life,	and	he	had	seen	all	of	them	and	that	the	Pythagoreans	had	far
the	best	lot	among	the	dead.	For	Pluto	dined	with	them	alone,
because	of	their	piety.

Lest	anyone	conclude	that	Aristophon	approved	of	Pythagoreans,	another
character	commented	that	Pluto	had	to	be	a	very	easygoing	god,	to	dine	with
such	filthy	riffraff.9

Diodorus	of	Aspendus,	who	was	not	fictional,	was	described	as	a	vegetarian
with	long	hair,	a	beard,	and	a	“crazy	garment	of	skins”	who	with	“arrogant
presumption”	drew	followers	about	him,	although	“Pythagoreans	before	him
wore	shining	bright	clothes,	bathed	and	anointed	themselves,	and	had	their	hair
cut	according	to	the	fashion.”10

Aristoxenus—who	interviewed	the	tyrant	Dionysius	in	his	Corinthian
“retirement”—would	have	none	of	this.	He	was	effectively	a	propagandist	for
the	mathematici,	taking	pleasure	in	contradicting	the	acusmatici	by	insisting	that
Pythagoras	ate	meat	and	that	the	aphorisms	were	ridiculous,	and	he	tried	to
disassociate	“true	Pythagoreans”	from	what	he	saw	as	this	unsavory,
superstitious	group	who	were	giving	the	movement	a	bad	name.	He	listed	the
pupils	of	Philolaus	and	Eurytus	and	called	them	“the	last	of	the	Pythagoreans”
who	“held	to	their	original	way	of	life,	and	their	science,	until,	not	ignobly,	they
died	out.”	Because	these	men	died	a	few	decades	before	the	comic	allusions	in
the	plays,	dubbing	them	“the	last	of	the	Pythagoreans”	was	making	the	point	that
the	butts	of	the	jokes	were	only	pretending	to	be	Pythagoreans.

Aristoxenus’	public	relations	efforts	did	not	succeed	well.	Through	the
fourth	century	B.C.,	the	popular	image	of	Pythagoreans	continued	to	resemble	the
acusmatici	more	than	the	mathematici.	But	after	the	fourth	century,	the
acusmatici,	with	a	few	exceptions,	dwindled	and	vanished	from	notice.	Had
there	been	no	other	Pythagorean	tradition	than	theirs,	and	if	they	did	indeed
represent	the	truer	image	of	Pythagoras	and	his	earliest	followers,	it	would	be
almost	impossible	to	explain	how	such	an	odd	cult	figure,	not	far	different	from
others	in	antiquity,	became	so	dramatically	and	rapidly	transformed	in	the	minds



of	intelligent	men	and	women	as	to	inspire	deep	and	effective	scientific	thinking
and	seize	the	imagination	of	centuries	of	people	to	come.

Was	it	all	due	to	Plato?	Did	he	get	so	excited	about	something	that	was
mainly	legend	that	he	elaborated	on	it	himself	until	he	had	made	it	hugely
significant?	At	a	minimum	there	had	to	have	been	the	discovery	in	music	of
pattern	and	rationality	underlying	nature,	and	the	accessibility	of	that	rationality
through	numbers—and	that	was	of	no	small	significance.	It	seems	much	more
reasonable	to	conclude	that	Pythagoras,	responding	to	different	types	of	interest
and	intelligence	among	his	followers,	encouraged	both	kinds	of	thinking
—acusmatici	for	those	who	needed	something	naive	and	more	regimented	and
conservative,	and	mathematici	for	those	with	minds	eager	to	grasp	difficult,
nuanced	concepts	and	explore	their	implications.	He	was	personally,	perhaps,
not	entirely	unlike	either	group.

However	that	may	be,	from	the	time	of	Plato,	what	survived	as
“Pythagorean”	and	“Pythagoras”	was	largely	mathematici,	and	that	included	the
conviction	that	right	from	the	time	of	Pythagoras	himself,	and	attributable	to
him,	there	had	been	a	truly	remarkable	new	approach	to	numbers,	mathematics,
philosophy,	and	nature.



CHAPTER	9

“The	ancients,	our	superiors	who
dwelt	nearer	to	the	gods,	have
passed	this	word	on	to	us”

Fourth	Century	B.C.

SOCRATES	WAS	NOT	PLATO’S	fictional	creation.	Born	about	thirty	years	after	the
death	of	Pythagoras,	near	the	time	Philolaus	was	born,	he	fought	in	the
Peloponnesian	Wars	and	then	lived	a	life	of	intentional	poverty	as	a	teacher	in
Athens.	He	wrote	nothing,	and	information	about	what	he	taught	comes	only
through	Plato’s	dialogues	and	similar	conversations	recorded	by	Xenophon,
another	of	Socrates’	pupils.	Socrates’	teaching	method	consisted	of	asking
questions.	Plato’s	dialogues	are	not	word-for-word	accounts	of	real	question-
and-answer	lessons,	but	are	almost	certainly	faithful	to	the	philosophy	as	it
emerged	in	conversations	like	these.	When	Socrates	was	seventy,	he	was
accused	of	impiety	and	corrupting	the	youth	of	Athens.	A	jury	of	his	fellow
citizens	sentenced	him	to	death,	probably	through	a	dose	of	hemlock.	He	died
surrounded	by	his	friends	and	pupils.

In	the	dialogues	Plato	wrote,	the	character	Socrates	usually	directed	the
discussions,	but	in	Plato’s	Timaeus	he	relinquished	center	stage	for	many	pages
to	a	fictional	character	named	Timaeus	of	Locri.	Timaeus	was	supposed	to	be	a
statesman	and	scientist	from	southern	Italy,	and	the	ideas	Plato	put	in	his	mouth
were	heavily	indebted	to	Archytas,	with	whom	he	had	apparently	spent	long
hours	in	Tarentum	deep	in	conversation	and	bent	over	mathematical	diagrams.
Perhaps	what	Timaeus	tells	Socrates	and	his	friends	in	the	dialogue	is	close	to
what	Archytas	laid	out	for	Plato.	Or	maybe	Archytas’	ideas	were	only	a
springboard	for	Plato.	Though	many	opinions	have	been	expressed	about	those
possibilities,	no	one	knows	for	certain,	and	the	truth	likely	lies	somewhere	in
between.

Plato	carried	forward	two	great	Pythagorean	themes:	(1)	the	underlying
mathematical	structure	of	the	world	and	the	power	of	mathematics	for	unlocking
its	secrets;	and	(2)	the	soul’s	immortality.1	The	stage	is	set	for	discussion	of	the
first	when	Socrates	asks	Timaeus,	an	expert	on	such	matters,	to	“tell	the	story	of
the	universe	till	the	creation	of	man.”2	Timaeus’	response	to	this	daunting



request	is	a	number-haunted,	Pythagorean	creation	story:	The	mathematical
order	of	the	universe	was	the	work	of	a	creative	god,	whom	Plato	called	the
demiurge—not	the	chief	god	or	the	only	god,	but	a	figure	loosely	comparable	to
Ptah,	the	Egyptian	god	at	Memphis,	or	to	Jesus	acting	in	the	role	of	the	logos	in
the	opening	of	the	Gospel	of	John—“through	him	all	things	were	created.”	This
craftsman	god,	says	Timaeus,	decided	that	the	universe	should	be	a	“living
being,”	spherical	and	moving	in	“a	uniform	circular	motion	on	the	same	spot;
unique	and	alone.”	Timeaus	sets	forth	a	numerical	construction	of	the	“world
soul”:	•	First	the	creator	god	took	his	material	and	“marked	off	a	section	of	the
whole.”

•	Then	he	marked	off	another	section	“twice	the	size	of	the	first.”

•	Next	he	marked	off	a	third	section,	“half	again	the	size	of	the	second
section	and	three	times	the	size	of	the	first.”

•	Next	he	marked	off	a	fourth	section,	“twice	the	size	of	the	second.”

•	Next,	a	section	“three	times	the	third.”

•	Next,	a	section	“eight	times	the	first.”

•	Last,	a	section	“twenty-seven	times	the	first.”

Counting	the	squares	in	each	line	gives	1,	2,	3,	4,	9,	8,	27.	The	first	four	of
those	numbers	are	the	numbers	in	the	tetractus	and	the	Pythagorean	musical
ratios,	2:1,	3:2,	4:3,	but	it	is	an	interesting	challenge	to	discern	a	meaningful



pattern	in	the	rest	of	the	numbers,	and	how	they	could	work	in	a	creation
scheme.	The	answer	is	that	if	you	square	each	of	the	first	two	numbers	2	and	3	(1
not	being	a	“number”),	you	get	4	and	9.	Cube	the	same	two	numbers,	2	and	3,
and	you	get	8	and	27.	For	a	Pythagorean	it	was	significant	that	each	pair	was	an
even	and	an	odd	number.	Plato	stopped	with	the	cubes	because	in	the	creation	of
three-dimensional,	solid	physical	reality,	only	three	dimensions	are	needed.

Next,	according	to	the	account	Plato	put	in	Timaeus’	mouth,	the	creator
divided	his	material	into	smaller	parts,	filling	in	harmonic	and	arithmetical
means	between	those	numbers	and	connecting	the	“world	soul”	with	a	diatonic
scale	in	music.*	Plato	used	a	scale	developed	by	Philolaus,	not	the	one
developed	by	Archytas.

Astronomy	in	his	Timaeus	was	also	worked	out	in	numbers,	with	the	“world
soul”	cut	into	two	strips	bent	around	to	form	an	“X”	at	one	point,	making	an
inner	and	outer	ring.	Two	such	rings	really	exist	in	astronomy,	the	celestial
equator	and	the	ecliptic.	The	celestial	equator	is	on	the	plane	of	Earth’s	equator
and	anchors	the	sphere	of	the	fixed	stars	that	do	not	change	their	positions	in	the
sky	relative	to	one	another	and	the	celestial	equator.	This	was	the	ring	Timaeus
called	“the	Same.”	It	stays	the	same	and	never	changes.	The	ecliptic	is	the
circular	path	that	the	Sun	appears	to	follow	in	its	daily	round,	with	the	planets
appearing	to	orbit	in	a	band	centered	on	it.	This	ring	was	Timaeus’s	“the
Different,”	for	it	changes	He	called	the	planets	“instruments	by	which	Time	can
be	measured.”*	The	creator	cut	the	Different	into	seven	narrower	strips	to
accommodate	Sun,	Moon,	and	five	planets,	with	the	radiuses	of	their	orbits
proportional	to	the	numbers	1,	2,	3,	4,	8,	9,	and	27.	Both	rings—Same	and
Different—were	in	constant	motion,	which,	Plato	thought,	nothing	but	a	living
soul	could	be,	unless	something	else	pushed	it.	The	rings	moved	in	opposite
directions,	the	Same	east	to	west,	the	Different	west	to	east,	and	the	seven	strips
of	the	Different	moved	at	different	speeds,	corresponding	to	the	speeds	of	the
Sun,	the	Moon	and	the	planets.

Plato	had	Timaeus	explain	that	the	movement	humans	see	in	the	sky	is	the
result	of	this	combination:	The	daily	rotation	of	the	Same	with	the	sphere	of



fixed	stars	carries	everything	around	with	it,	east	to	west,	including	Sun,	Moon,
and	planets.	But	the	Sun,	Moon,	and	planets—the	seven	bodies	of	the	Different
—have	in	addition	their	own	contrary	west-to-east	motion	against	that
background.	They	“swim	upstream,”	so	to	speak,	against	the	current	of	the
Same,	at	varying	speeds,	and	sometimes	back	up.	This,	says	Timaeus,	is	because
they	are	souls,	and	souls	exercise	independent	choices	and	power	of	movement.
It	is	believed	to	be	one	of	the	Pythagorean	triumphs,	showing	up	in	Philolaus’
fragments,	in	more	detail	in	Archytas’	work,	and	then	in	Plato,	to	have	explained
heavenly	motion	correctly	as	a	combination	of	opposite	movements.

Geometry,	Plato	had	Timaeus	explain,	had	a	detailed	role	in	creation	when
primordial	disorder	was	sorted	into	four	elements—earth,	fire,	air,	and	water—
and	the	creator	introduced	four	geometric	figures—cube,	pyramid	or
tetrahedron,	octahedron,	and	icosahedron.	These	“Pythagorean”	or	“Platonic”
solids	are	four	of	the	five	possible	solids	in	which	all	the	edges	are	the	same
length	and	all	the	faces	are	the	same	shape.*	Each	element—earth,	fire,	air,	and
water—was	made	up	of	tiny	pieces	in	one	of	those	shapes,	too	small	to	be	visible
to	the	eye.

Plato	had	Timaeus	continue:	The	four	elements	and	four	solids	were	not	the
alphabet	of	the	universe.	The	solids	were	constructed	of	something	even	more
basic,	two	types	of	right	triangles.	Plato,	through	Timaeus,	admitted	there	was
room	for	argument	about	which	triangles	were	most	basic,	but	he	thought	he	was
correct	to	choose	the	isosceles	triangle	and	scalene	triangle.	Both	are	right
triangles.

The	isosceles	triangle	is	made	by	cutting	a	square	into	equal	halves	on	the
diagonal.	Obviously,	two	isosceles	triangles	make	a	square,	and	squares	make	up
cubes	(one	of	the	solids).

In	a	scalene	triangle,	the	diagonal	is	twice	as	long	as	the	shortest	side.	Two
scalene	triangles	set	back	to	back	create	an	equilateral	triangle—none	other	than
the	Pythagorean	tetractus.	The	faces	of	the	tetrahedron,	octahedron,	and
icosahedron	are	equilateral	triangles.



Here	is	Plato’s	explanation.
Cube:	Fasten	together	the	edges	of	six	squares	(each	made	by	pairing	two

isosceles	triangles).	The	result	is	a	cube,	the	only	regular	solid	that	uses	the
isosceles	triangle	or	square	for	its	construction.

Pyramid	or	tetrahedron:	Fasten	together	the	edges	of	four	equilateral
triangles	(each	made	by	pairing	two	right	scalene	triangles).	The	result	is	a
pyramid	or	tetrahedron.

Octahedron:	Fasten	together	the	edges	of	eight	equilateral	triangles.	The
result	is	an	octahedron.

Icosahedron:	Fasten	together	the	edges	of	twenty	equilateral	triangles.	The
result	is	an	icosahedron.

The	Pythagoreans	and	Plato	knew	the	dodecahedron,	the	only	regular	solid
made	of	pentagons	(12	of	them),	but	Plato	did	not	use	it	in	his	scheme.

Beyond	those	five—cube,	pyramid,	octahedron,	icosahedron,	and
dodecahedron—there	are	no	other	regular	solids	(polyhedrons).	Try	to	fasten
together	any	other	number	of	any	regular	figure	(polygon).	You	get	no	fit.	No
wonder	the	Pythagoreans,	Plato,	and	later	Kepler	thought	these	solids	were
mysterious.

Timaeus	explains	to	Socrates	and	the	other	characters	in	the	dialogue	that
earth	is	made	up	of	microscopic	cubes,	fire	of	tetrahedrons,	air	of	octahedrons,
water	of	icosahedrons.	The	pairings	were	based	on	how	easily	movable	each
solid	was,	how	sharp,	how	penetrating,	and	on	considerations	of	what	qualities	it
would	give	an	element	to	be	made	up	of	tiny	pieces	in	this	shape.

Timaeus	pairs	the	fifth	regular	solid,	the	dodecahedron,	with	“the	whole
spherical	heaven,”	and	in	his	Phaedo,	Plato	associated	it	with	the	spherical
Earth,	in	spite	of	the	fact	that	in	his	time	most	of	the	Greek	world,	except	for	the
scattered	Pythagorean	communities,	still	assumed	the	Earth	was	flat.	The
dodecahedron	comes	close	to	actually	being	a	sphere.	In	fact,	the	earliest
mention	of	a	dodecahedron	was	in	sports,	with	twelve	pentagonal	pieces	of	cloth
sewn	together	and	the	result	inflated	to	create	a	ball.	Each	of	the	five	solids	fits
into	a	sphere	with	each	of	its	points	touching	the	inner	surface	of	the	sphere,	and



a	sphere	can	be	fitted	into	each	of	the	solids	so	as	to	touch	the	center	of	each
surface,	which	makes	sense	of	Philolaus’	enigmatic	(and	controversial)
fragment:	“The	bodies	in	the	sphere	are	five:	fire,	water,	earth,	and	air,	and
fifthly	the	hull	of	the	sphere.”

Though	the	triangles	making	up	the	solids	in	Plato’s	scheme	may	have	been
the	basic	“alphabet”	of	creation,	he	thought	they	were	not	the	fundamentals	or
archai.	In	the	dialogue	Philebus,	Socrates	says	knowledge	of	the	principles	of
unlimited	and	limiting	is	“a	gift	of	the	gods	to	human	beings,	tossed	down	from
the	gods	by	some	Prometheus	together	with	the	most	brilliant	fire.	And	the
ancients,	our	superiors	who	dwelt	nearer	to	the	gods,	have	passed	this	word	on	to
us.”3	Plato’s	contemporaries	and	generations	of	later	readers	thought	that	by
“some	Prometheus,”	he	meant	Pythagoras,	and	that	“the	ancients,	our	superiors
who	dwelt	nearer	to	the	gods,”	were	the	Pythagoreans,	which	contributed
substantially	to	the	image	of	Pythagoras	as	a	channel	for	superhuman	knowledge
and	wisdom.	If	Plato	meant	that,	he	short-changed	Anaximander,	who	had	talked
of	“unlimited”	and	“limiting”	earlier.

According	to	Plato,	one	thing	that	“some	Prometheus”	tossed	down
concerning	the	unlimited	and	the	limiting	was	that	“all	things	that	are	said	to	be
are	always	derived	from	One	and	from	Many,	having	Limit	and	Unlimitedness
inherent	in	their	nature.”4	He	explained	this	in	unpublished	lectures	at	his
Academy	that	Aristotle	reported	firsthand.

Plato	chose	to	transform	the	concepts	of	unlimited	and	limiting	into
something	slightly	easier	to	understand:	unity	and	plurality.	He	called	these	“the
One”	(unity)	and	the	“Indefinite	Dyad”	(plurality).	It	is	easy	enough	to	grasp
what	is	meant	by	One,	or	unity,	but	the	Indefinite	Dyad	is	a	more	difficult
concept.	Think	of	it	as	more	than	one,	or	everything	that	is	not	One,	or—more
vaguely,	but	closer	to	what	Plato	apparently	meant—something	implying	the
possibility	of	numbers	or	a	role	for	numbers	(there	would	be	no	role	for	numbers
if	everything	were	One),	but	not	implying	that	numbers	actually	exist.	The
Indefinite	Dyad	also	implied	the	possibility	of	opposites—large/small;	hot/cold
—for	if	everything	were	One,	opposites	would	not	exist.

To	start	things	off,	the	One	acted	in	some	fashion	upon	the	Indefinite	Dyad
and	the	result	was	a	definite	number,	2.	The	One	went	on	acting	on	the	Dyad,
generating	the	numbers	up	to	10.	Once	they	existed,	the	numbers	2,	3,	and	4—
numbers	in	the	Pythagorean	tetractus—predictably	played	a	special	role,
organizing	the	Dyad	to	produce	geometry.	Plato	introduced	again	the
progression	point–line–surface–solid,	connecting	the	One	and	the	Indefinite
Dyad	with	the	world	as	humans	knew	it.	The	meeting	of	the	One	and	the



Indefinite	Dyad	had	been	the	flashpoint	that	brought	everything	else	into
existence.

On	a	more	mundane	level,	Plato	connected	numbers	with	ideas	about	an
ideal	society	and	ideal	rulers.	He	had	probably	only	recently	returned	from	his
first	visit	to	Syracuse	when	he	wrote	his	Gorgias,	his	earliest	dialogue	to	deal
explicitly	with	political	matters.	A	character	named	Callicles	in	the	dialogue
lusts	for	power	and	luxury,	and	Socrates	admonishes	him	in	words	that	ring	with
Pythagorean	conviction:	Wise	men	say	that	heaven	and	earth	and	gods	and	men
all	are	held	together	by	community,	friendship,	orderliness,	self-control	and
justice,	which	is	why	they	call	this	universe	a	kosmos	(a	world	order,	or
universe)—not	disorderliness	or	intemperance.	But,	I	fear,	you	ignore	them,
though	you	are	wise	yourself,	and	fail	to	see	what	power	is	wielded	among	both
gods	and	men	by	geometrical	equality.	Hence	your	defence	of	selfish
aggrandisement.	It	arises	from	your	neglect	of	geometry.5

Also	in	Plato’s	Timaeus,	before	Socrates	relinquishes	the	floor,	he	reminds	his
listeners	of	two	decidedly	Pythagorean	conditions	of	“equality”	needed	for	an
ideal	society:	Those	whose	duty	is	to	defend	the	community,	internally	and
externally,	should	hold	no	private	property	but	own	all	things	in	common.
Women	should	share	in	all	occupations,	in	war	and	in	the	rest	of	life.	However,
sharing	in	all	occupations	did	not	apparently	indicate	true	equality	for	women,
for	later	in	the	same	dialogue	Timaeus	says	that	if	a	man	fails	to	live	a	good	life
he	may	be	relegated	to	being	a	woman	in	the	next.

Archytas	had	introduced	Plato	to	the	Pythagorean	quadrivium,	the
curriculum	comprising	arithmetic,	geometry,	astronomy,	and	music.	Plato	had
Socrates	declare,	“I	think	we	may	say	that,	in	the	same	way	that	our	eyes	are
made	for	astronomy,	so	our	ears	are	made	for	harmony,	and	that	the	two	are,	as
the	Pythagoreans	say,	sisters	of	one	another,	and	we	agree.”	That	was	Plato’s
only	mention	of	the	Pythagoreans	by	name,	but	as	Socrates	continues	he	clearly
is	still	talking	about	them:	“They	gave	great	attention	to	these	studies,	and	we
should	allow	ourselves	to	be	taught	by	them.”

Plato	was	not,	however,	entirely	in	agreement	with	the	Pythagorean
approach:	Studying	the	stars	and	their	movements	was	useful	insofar	as	it	got
one	beyond	surface	appearances	to	underlying	mathematical	principles	and	laws
of	motion,	but,	though	the	stars	and	their	movements	illustrated	these	realities,
they	never	got	them	precisely	right.	A	philosopher	had	to	go	further	than	what
they	could	show	him	and	attempt	to	understand	“the	true	realities,	which	reason
and	thought	can	perceive	but	which	are	not	visible	to	the	eye.”6	Plato	was



convinced	that	a	new	manner	of	education	was	needed.
Not	long	after	his	first	visit	to	Syracuse,	Plato	had	acquired	property	near

Athens	that	included	an	olive	grove,	a	park,	and	a	gymnasium	sacred	to	the
legendary	hero	Academus.	In	that	pleasant	setting,	he	had	founded	his	Academy
—the	name	deriving	from	the	legendary	hero.	For	the	rest	of	his	life,	except	for
sojourns	abroad,	he	taught	there,	lectured,	and	set	problems	for	his	students.*
His	trainees	spent	ten	years	(between	the	ages	of	twenty	and	thirty)	mastering
the	quadrivium,	but	this	was	only	a	preliminary	step	in	Plato’s	preparation	of
them	to	serve	as	civic	leaders	who	were	also	philosophers.	Education	continued
in	the	form	of	“dialectic.”	It	is	not	surprising	that	Dionysius—in	the	middle	of
running	an	impossibly	unwieldy	tyranny—balked,	though	this	was	the	training
Plato	and	Dion	felt	would	enable	him	to	rule	effectively.

Plato	required	the	dialectic,	not	merely	the	quadrivium,	because	he	believed
that	the	world	as	humans	can	know	it	is	at	best	only	an	imperfect	likeness	to
something	else—only	a	flawed	copy	of	a	unique,	perfect,	eternal	model	that	just
“is,”	“always	is,”	“never	becomes,”	and	can	never	change	or	be	destroyed.	In	the
world	perceptible	to	humans,	things	resembled	this	higher	realm	of	the	“Forms”
and	had	the	same	names,	but	they	were	not	perfect	and	eternal.*	They	changed
—they	“became.”	They	began	to	exist,	came	to	an	end,	moved	about,	and	were
subject	to	opinions	and	passions.	They	were	copies	or	imitations	of	the	Forms;
but	“never	fully	real.”7	The	realm	of	the	Forms	could	not	be	perceived	by	the
human	senses,	but	through	reasoning	and	intelligence	humans	could	come	nearer
to	perceiving	it.	To	stretch	toward	it,	Plato	thought,	you	had	to	use	discussion
and	debate,	hence	“dialectic.”	That	was	what	his	characters	did	in	his	dialogues
—Socrates’	question-and-answer	lessons—those	discussions	that	never	settled
anything	definitely.

Forms,	in	Plato.

Plato	spoke	of	two	levels	of	reality:

(1)	the	divine	realm	of	immutable	Forms,	which	is	the	model	for
(2)	the	realm	in	which	humans	live	and	where	everything	is	continually

changing,	ruled	by	the	passions,	subject	to	opinion.

Where	did	Plato	place	numbers	and	mathematics	in	this	picture?	Parting
company	with	the	Pythagoreans	and	with	Archytas,	he	thought	that	although	the



logic	of	mathematics	and	geometry	might	be	part	of	the	universal,	immutable
truths	of	the	Forms,	there	was	no	way	humans	could	find	out	whether	or	not	they
were.	Human	mathematics	was	earthbound,	deductive	reasoning,	capable	of
building	only	on	its	own	previous	knowledge,	making	the	truth	of	human
mathematics	only	hypothetical,	not	necessarily	Truth	with	a	capital	T.	In	Plato’s
house,	there	was	no	complete	staircase	from	the	human-experience	level	to	the
level	of	the	Forms.	Numbers	and	mathematics	could	take	you	up	a	few	flights.
By	using	dialectic,	argument,	thought,	and	logic,	you	could	go	higher,	but	those
flights	also	fell	short	of	reaching	the	top.	You	could	never	find	out	whether	what
was	up	there	on	the	unreachable	level	was	mathematical	or	not.	The	Pythagorean
house,	by	contrast,	had	a	complete	staircase	made	entirely	of	numbers	and
mathematics.	Humans	could	climb	it	and,	reaching	the	top,	would	discover	that
what	was	up	there	was	also	mathematical.	Pythagoreans	were	sure	they	knew
that	mathematics	and	numbers	were	the	rationality	of	the	universe	and	the	key	to
complete	understanding	and	reunion	with	the	divine	level	of	reality.

“Knowing”	in	a	context	like	this	was	problematic	for	Plato,	for	it	was	not
compatible	with	a	universe	in	which	the	Forms	could	never	be	fully	known.	The
Pythagoreans,	however,	had	had	an	experience	that	Plato	lacked.	The	discovery
that	mathematical	logic	and	pattern	underlie	nature	had	apparently	come	as	a
shocking,	intuitive	impression	for	them.	Mathematics	and	numbers	were	the
rational,	unconditional	principles	of	the	universe,	waiting	to	be	discovered,	not
deduced	from	things	already	known.	Had	they	heard	Plato	speak	about	a	search
for	“the	invisible	and	incorporeal	realm	of	Form,”	one	of	them	might	well	have
raised	a	hand	and	insisted	they	had	found	it.	Their	experience	was	that	the	vein
of	Truth	(call	it	Forms,	if	you	are	Plato),	mostly	buried	deep	beyond	the	reach	of
the	senses,	at	some	rare	points	lies	close	enough	to	the	surface	to	be	perceived,
like	a	vein	of	gold	gleaming	through	a	thin	layer	of	dust	and	rock.	The	realm	of
music	was	one	of	those	thin	places.

Plato’s	pupils,	and	their	pupils,	continued	to	ponder	the	issues	he	had
wrestled	with,	including	the	questions	about	whether	the	numbers	are	Forms.
Speusippus	allowed	numbers	and	“mathematicals”	to	take	the	place	of	the
Forms,	while	Xenocrates	said	that	the	Forms	were	the	numbers.	Both	thought	of
themselves,	and	Plato,	as	Pythagoreans.

Many	scientists	and	mathematicians	today	still	hold	to	a	Pythagorean	faith
that	truth	about	the	universe	is	inherently	mathematical,	and	that	it	is	possible	to
grasp	at	least	bits	of	that	truth	by	using	our	human	level	of	mathematics.	A	few
insist	that	mathematics	is	the	only	discipline	in	which	some	things	are
unarguably	true	and	not	subject	to	opinion,	while	others	will	not	grant	it	that.



Still	others	redefine	“complete	truth”	as	“truth	that	human	beings	can	discover
through	mathematics,”	stretching	the	Pythagoreans	beyond	their	own	meaning
and	performing	an	end	run	around	Plato.

THE	SECOND	PYTHAGOREAN	theme	that	inspired	Plato	was	the	creation	and
destiny	of	the	soul.	He	applied	the	mathematical	proportions	that	went	into	the
creation	of	the	“world	soul”	also	to	the	human	soul,	and	even	described	the	soul
in	terms	of	a	version	of	the	Same	and	Different,	reflecting	two	types	of
competing	judgment—the	ability	and	privilege	of	a	human	to	say	yes	or	no.	For
Plato,	this	free	will	was	the	essence	of	rational	thought.	But	things	were	not	easy
for	a	soul	living	in	a	physical	body	on	Earth,	the	Moon,	or	one	of	the	planets.	At
the	mercy	of	all	the	passions	of	its	body,	it	inevitably	got	distorted	and	stirred
up.	Proper	education	could	restore	it	to	harmonious	equilibrium	by	reawakening
it	to	its	link	with	the	world	soul.	One	way	this	could	happen	was	through
something	heard	and	understood—the	musical	scale,	the	proportions	of	the
world	soul	reproduced	in	sound.

The	Pythagorean	belief	that	a	soul	could	ultimately	escape	the	distorting
influences	of	the	world	and	be	reunited	with	the	divine	level	of	the	universe
fascinated	Plato.	His	ideas	about	immortality	ranged	from	skepticism	in	his
Apology	to	mystical	speculation	in	his	Gorgias,	where	Socrates	attributes	some
of	his	thoughts	about	the	soul	to	“some	clever	Sicilian	or	Italian”—an	allusion	to
the	Pythagoreans	and	probably	to	the	philosopher	Empedocles,	who	was	often
included	under	the	Pythagorean	banner.	The	dialogue	ended	with	a	myth	in
which	souls	witness	the	horrible	punishment	of	incurable	sinners	in	Hades.
Plato,	in	this	dialogue,	did	not	argue	for	a	doctrine	of	reincarnation,	but	his	myth
assumed	that	reincarnation	occurred	for	those	witnesses.

Plato	probably	wrote	his	Meno	after	his	first	visit	with	Archytas.	In	it,
Socrates	speaks	of	“wise	priests	and	priestesses”	whose	authority	is	reliable,	who
teach	about	immortality	and	reincarnation—a	bow	to	the	Pythagoreans.	Plato
had	Socrates	attribute	to	those	“priests	and	priestesses”	the	idea	that	because	of
what	we	have	experienced	earlier,	much	of	what	we	know	in	this	present	life	is
“recollection.”	This	does	not	seem	out	of	line	with	what	Pythagoras	claimed	for
himself,	but	Plato	had	something	different	in	mind	that	he	and	his	pupils	thought
was	compatible	with	Pythagorean	teaching.

As	Plato	interpreted	the	Pythagorean	concept	of	the	transmigrating	soul,	the
possibility	of	escape	from	the	parade	of	reincarnations	lay	in	“becoming	just	and
pious	with	wisdom,”	freeing	the	soul	from	fear	and	the	passions	and	pains	of	the
body.	The	highest	goal	was	“becoming	like	god,”	as	Plato	phrased	it	in	his



Theaetetus.	Several	centuries	later,	the	pagan	neo-Platonist	Porphyry
(Pythagoras’	biographer)	listed	Hercules,	Pythagoras,	and	Jesus	among	those
who	had	succeeded	in	this	ultimate	achievement	of	“becoming	like	god.”

“Recollection,”	for	Plato,	did	not	however	mean	memories	of	past	lives.
Instead,	it	was	the	mysterious,	innate,	a	priori	knowledge	that	humans	seem	to
possess,	that	cannot	be	explained	by	what	one	has	learned	in	one’s	present	life.
Plato	did	not	imply	that	anyone	could	recall	acquiring	this	knowledge.	As	a
demonstration,	he	used	the	geometric	exercise	that	some	believe	reflected
Pythagoras’	proof	of	the	Pythagorean	theorem.

In	this	scene	from	Plato’s	Meno,	Socrates	and	Meno	are	discussing	a	figure
Socrates	has	drawn	in	the	sand,	a	four-foot	square.	The	task	is	to	double	the	size
of	the	square.	Socrates	intends	to	demonstrate	that	innate	knowledge—not	of	the
correct	answer	but	of	the	underlying	geometry	that	will	lead	to	the	correct
answer—lies	hidden	in	Meno’s	slave	boy,	waiting	to	be	reawakened.	Socrates	is
acting	as	a	sort	of	midwife.

SOCRATES	(to	Meno):	Now	notice	what	he	will	discover	by	seeking
the	truth	in	company	with	me,
though	I	simply	ask	him	questions	without	teaching	him.	Be	ready
to	catch	me	if	I	give	him	any	instruction	or	explanation	instead	of
simply	interrogating	him	on	his	own	opinions.	(Socrates	rubs	out
previous	figures	in	the	sand	and	starts	again	with	a	four-foot

square.)	

Tell	me,	boy,	is	not	this	our	square	of	four	feet?	You	understand?
BOY:	Yes.
SOCRATES:	Now	we	can	add	another	equal	to	it	like	this?

(Draws.)

BOY:	Yes.
SOCRATES:	And	a	third	here,	equal	to	each	of	the	others?

(Draws.)



BOY:	Yes.
SOCRATES:	And	then	we	can	fill	in	this	one	in	the	corner?

(Draws.)

BOY:	Yes.
SOCRATES:	Then	here	we	have	four	equal	squares?
BOY:	Yes.
SOCRATES:	And	how	many	times	the	size	of	the	first	square	is	the

whole?
BOY:	Four	times.
SOCRATES:	And	we	want	one	double	the	size.	You	remember?
BOY:	Yes.
SOCRATES:	Now,	do	these	lines	going	from	corner	to	corner	cut	each

of	these	squares	in	half?	(Draws.)

BOY:	Yes.
SOCRATES:	And	these	are	four	equal	[diagonal]	lines	enclosing	this

[central]	area?
BOY:	They	are.
SOCRATES:	Now	think,	how	big	is	this	[central]	area?
BOY:	I	don’t	understand.
SOCRATES:	Here	are	four	squares.	Has	not	each	[diagonal]	line	cut	off

the	inner	half	of	each	of	them?



BOY:	Yes.
SOCRATES:	And	how	many	such	halves	are	there	in	this	[central	area]?
BOY:	Four.
SOCRATES:	And	how	many	in	[one	of	the	original	squares]?
BOY:	Two.
SOCRATES:	And	what	is	the	relation	of	four	to	two?
BOY:	Double.
SOCRATES:	How	big	is	this	figure	then?
BOY:	Eight	feet.
SOCRATES:	On	what	base?
BOY:	This	one.	(Indicates	one	of	the	diagonal	lines.)
SOCRATES:	The	line	which	goes	from	corner	to	corner	of	the	square	of

four	feet?
BOY:	Yes.
SOCRATES:	The	technical	name	for	it	is	“diagonal”;	so	if	we	use	that

name,	it	is	your	personal	opinion	that	the	square	on	the	diagonal	of
the	original	square	is	double	its	area?

BOY:	That	is	so,	Socrates.
SOCRATES:	What	do	you	think,	Meno?	Has	he	answered	with	any

opinions	that	were	not	his	own?
MENO:	No,	they	were	all	his.
SOCRATES:	Yet	he	did	not	know,	as	we	agreed	a	few	minutes	ago.
MENO:	True.
SOCRATES:	But	these	opinions	were	somewhere	in	him,	were	they

not?
MENO:	Yes.
SOCRATES:	So	a	man	who	does	not	know	has	in	himself	true	opinions

on	a	subject	without	having	knowledge.
MENO:	It	would	appear	so.
SOCRATES:	At	present	these	opinions,	being	newly	aroused,	have	a

dream-like	quality.	But	if	the	same	questions	are	put	to	him	on
many	occasions	and	in	different	ways,	you	can	see	that	in	the	end
he	will	have	knowledge	on	the	subject	as	accurate	as	anybody’s.

MENO:	Probably.
SOCRATES:	This	knowledge	will	not	come	from	teaching	but	from



SOCRATES:	This	knowledge	will	not	come	from	teaching	but	from
questioning.	He	will	recover	it	for	himself.

MENO:	Yes.
SOCRATES:	And	the	spontaneous	recovery	of	knowledge	that	is	in	him

is	recollection,	isn’t	it?
MENO:	Yes.
SOCRATES:	Either	then	he	has	at	some	time	acquired	the	knowledge

which	he	now	has,	or	he	has	always	possessed	it.	If	he	always
possessed	it,	he	must	always	have	known;	if	on	the	other	hand	he
acquired	it	at	some	previous	time,	it	cannot	have	been	in	this	life,
unless	somebody	has	taught	him	geometry.	He	will	behave	in	the
same	way	with	all	geometrical	knowledge,	and	every	other	subject.
Has	anyone	taught	him	all	these?	You	ought	to	know.	He	has	been
brought	up	in	your	household.

MENO:	Yes,	I	know	that	no	one	has	ever	taught	him.
SOCRATES:	And	has	he	these	opinions,	or	hasn’t	he?
MENO:	It	seems	we	can’t	deny	it.
SOCRATES:	Then	if	he	did	not	acquire	them	in	this	life,	isn’t	it

immediately	clear	that	he	possessed	and	had	learned	them	during
some	other	period?

MENO:	It	seems	so.
SOCRATES:	When	he	was	not	in	human	shape?
MENO:	Yes.

A	modern	attorney	would	probably	object	that	Socrates	was	“leading	the
witness.”	But	Plato	was	not	talking	about	knowledge	the	boy	had	hidden
somewhere	in	his	mind	because	he	had	witnessed	it	or	been	taught	it	in	a
previous	life:	the	date	of	an	event	or	the	length	of	a	road—knowledge	of	the
changeable	world.	Plato	meant	inborn	knowledge	of	truths	that	do	not	change—
universal	and	immutable	truths	of	the	Forms,	in	this	case	truths	of	geometry.	The
point	of	Plato’s	lesson	scene	was	that	at	each	stage	of	questioning,	the	boy	knew
whether	what	Socrates	was	suggesting	was	correct.	Such	recollection	of	the
“eternal	Forms”	came	not	from	past	lives	at	all	but	from	experiences	of	the
disembodied	soul.

Many	who	first	encounter	proofs	in	a	setting	other	than	a	smotheringly	dry
presentation	are	struck	by	this	deep,	mysterious	sense	of	recognition	of
something	they	already	knew.	Indeed	there	are	truths	that	have	been



“rediscovered”	time	and	time	again	(the	Pythagorean	theorem	may	be	one	of
them)	by	ancient	people	and	by	more	recent	individuals	who	were	unaware	they
were	repeating	a	former	discovery.	Socrates’	demonstration	was	an	extremely
Pythagorean	lesson,	for	it	united	the	two	Pythagorean	themes:	the	immortality	of
the	soul	and	the	mathematical	structure	of	the	world.

Other	dialogues	and	his	Republic	show	that	Plato’s	mind	was	much	taken	up
with	the	doctrines	of	recollection,	reincarnation,	and	immortality.	His	Phaedo
ends	shortly	after	Socrates’	death,	with	Phaedo	pausing	on	his	journey	home
from	Athens	in	a	Pythagorean	community	in	Phlius	to	tell	Echecrates	and	other
Pythagoreans	about	the	philosopher’s	last	words.	In	a	discussion	centering	on
immortality	and	reincarnation,	Phaedo	repeats	Socrates’	quote	from	an	Orphic
poem	that	Socrates	had	thought	spoke	of	philosophy’s	power	to	raise	one	to	the
level	of	the	gods.	In	his	Phaedrus,	Plato	wrote	that	human	“love”	was
recollection	of	the	experience	of	Beauty	as	an	eternal	Form.

In	his	“Myth	of	Er,”	at	the	end	of	The	Republic,	Plato	most	clearly	revealed
his	belief	in	reincarnation,	although,	true	to	his	doctrine	that	knowledge	of
ultimate	truth	is	unattainable,	he	used	the	term	“myth”	to	indicate	that	he	could
not	vouch	for	the	absolute	truth	of	the	lessons	it	taught.	In	the	“myth”	he
imagined	what	happens	when	one	life	has	ended	and	the	next	has	not	yet	begun:
Each	soul	chooses	what	it	will	be	in	the	next	life.	Choices	include	“lives	of	all
living	creatures,	as	well	as	of	all	conditions	of	men.”	Orpheus	chooses	to	be	a
swan	so	as	not	to	be	born	of	a	woman—for	frenzied	Bacchic	women	had	torn
him	apart	in	a	former	life—while	a	soul	who	has	lived	previously	as	a	swan
chooses	to	be	a	man.	The	harmony	of	the	spheres	was	also	on	Plato’s	mind.	The
souls	see	a	vision,	a	magnificent	model	of	the	cosmos.	On	each	of	the	circles	in
which	the	planets	and	other	bodies	orbit	stands	“a	Siren,	who	was	carried	round
with	its	movement,	uttering	a	single	sound	on	one	note,	so	that	all	the	eight	made
up	the	concords	of	a	single	scale.”	Though	Earth,	in	Plato’s	cosmos,	sat	dead
center,	and	there	was	no	central	fire	or	counter-earth,	the	“Myth	of	Er”	was
suffused	with	Pythagorean	ideas.

When	the	members	of	Plato’s	Academy	before	and	after	his	death	in
348/347	B.C.	thought	about	Pythagoras	and	called	themselves	Pythagorean,	they
had	in	mind	mainly	Pythagoras	as	seen	through	Plato’s	eyes.	However,	to	say
that	Pythagoras	was	reinvented	as	a	“late	Platonist,”	as	some	scholars	insist,	is	to
be	too	glib	and	overconfident	about	where	to	draw	the	lines	between	original
Pythagorean	thought,	Pythagorean	thought	shortly	after	Pythagoras’	death,
Archytas,	Plato,	and	Plato’s	pupils,	some	of	whom	attributed	their	own	ideas	to
more	ancient	Pythagoreans	and	even	to	Pythagoras.	As	time	passed,	the	line



between	Platonism	and	what	called	itself	Pythagorean	became	increasingly
difficult	to	discern.	Eventually	the	two	were	indistinguishable.



CHAPTER	10

From	Aristotle	to	Euclid
Fourth	Century	B.C.

WHILE	MOST	SCHOLARS	WERE	content	to	view	Pythagorean	teachings	through
Plato’s	eyes	and	not	eager	to	differentiate	between	Plato’s	philosophy	and	the
thinking	of	pre-Platonic	Pythagoreans,	one	person	was	still	curious.	That	was
Aristotle.	Born	in	384,	he	was	two	generations	younger	than	Plato	and	at	age
seventeen	had	come	to	Athens	to	study	at	Plato’s	Academy.	Plato	was	away	at
the	time,	on	one	of	his	jaunts	to	Sicily.	Twenty	years	later,	when	Plato	died	at
age	eighty	in	348,	Aristotle	was	only	thirty-seven	and,	perhaps	because	of	his
youth,	was	not	chosen	to	succeed	Plato	as	scholarch	of	the	Academy.	Instead,
though	by	then	hardly	anyone	failed	to	recognize	that	Aristotle	was	one	of	the
most	gifted	men	around,	Plato’s	nephew	Speusippus	got	the	job.	Aristotle	left
Athens	and	eventually	returned	to	found	his	own	school,	the	Lyceum.	His	debt
to	Plato	was	clear	throughout	his	work,	but	so	was	the	fact	that	the	two	disagreed
in	significant	ways.	Aristotle	was	not	happy	with	Plato’s	concept	of	Forms.	Plato
thought	the	world	as	humans	knew	it	was	only	an	undependable	reflection	of	a
real	world	that	humans	could	never	know.	Aristotle,	by	contrast,	believed	that
the	world	humans	perceive	is	the	real	world.	He	highly	valued	what	could	be
learned	about	nature	through	use	of	the	human	senses,	and	what	could	be
extrapolated	from	those	perceptions.	It	would	not	have	displeased	Aristotle	to
find	that	Plato’s	teachings	were	at	least	in	part	derivative	of	the	Pythagoreans.	In
his	Metaphysics,	in	a	passage	following	his	description	of	Pythagorean
philosophies,	Aristotle	looked	down	his	nose	at	Plato	and	invited	his	readers	to
do	the	same:	“To	the	philosophies	described,	there	succeeded	the	work	of	Plato,
which	in	most	respects	followed	these	men,	though	it	had	some	features	of	its
own	apart	from	the	Italian	philosophy.”1

To	make	such	a	statement,	Aristotle	had	to	be	fairly	confident	he	knew	what
the	“Italian	philosophy”	was	before	it	fell	into	Plato’s	hands.	His	research	was
extensive	and	careful,	including	the	work	of	Philolaus	and	Archytas	and	other
sources	we	know	little	or	nothing	about,	and	he	recorded	the	results	in	several
books.*	Unfortunately,	those	devoted	entirely	to	the	person	of	Pythagoras	and
Pythagorean	teaching	are	lost,	but	because	he	spent	so	much	time	and	effort	on



them,	and	referred	elsewhere	to	his	“more	exact”	discussions	in	them,	there	is	no
doubt	Aristotle	knew	the	subject	well.†	References	and	quotations	from	the	lost
books	appear	in	the	writings	of	authors	who	lived	before	the	books	disappeared,
making	it	possible	to	peer,	indirectly,	at	a	few	of	the	vanished	pages.2	The	result
is	a	window	into	what	Pythagoreans	were	thinking	and	teaching	before	Plato,
helping,	at	least	a	little,	to	circumvent	that	frustrating	impasse,	the	question	of
whether	what	later	generations	thought	they	knew	about	the	Pythagoreans	and
their	doctrine	was	only	a	Platonic	interpretation.

Aristotle	was	one	of	the	earliest,	most	dependable	sources	used	by
Iamblichus,	Porphyry,	and	Diogenes	Laertius.	His	information	went	back	to
shortly	after	Pythagoras’	death	(within	about	fifty	years),	but	in	the	books	that
have	survived	he	never	claimed	that	any	specific	teaching	could	or	could	not	be
attributed	directly	to	Pythagoras.	He	also	made	no	distinction	between	the	ideas
of	Pythagoreans	who	lived	close	to	the	time	of	Pythagoras	and	those	who	lived
nearer	the	time	of	Plato.	He	used	a	Greek	form	that	Burkert	says	is	the
equivalent	of	putting	words	between	quotation	marks	in	modern	literature—the
“Pythagoreans”—though	translating	it	as	“the	so-called	Pythagoreans”	would
put	too	negative	a	spin	on	it.

Aristotle	wrote	that	what	set	both	Plato	and	the	Pythagoreans	apart	from	all
other	thinkers	who	had	lived	before	Aristotle’s	own	time	was	their	view	of
numbers	as	distinct	from	the	everyday	perceivable	world.	However,	the
Pythagoreans	regarded	numbers	as	far	less	independent	of	the	everyday,
perceivable	world	than	Plato	did.	At	the	same	time,	for	the	Pythagoreans,
numbers	were	also	more	“fundamental.”	If	these	distinctions	seem	confusing,
they	were,	even	for	Aristotle.	His	difficulty	deciding	and	explaining	what	the
Pythagoreans	thought	about	numbers	was	not,	at	heart,	a	matter	of	being	unable
to	find	out.	Rather,	he	could	not	think	with	their	minds.	The	discussion	he	was
insisting	on	having—about	what	was	more	fundamental,	more	abstract,	or	more
or	less	distinct	from	sensible	things—would	not	have	taken	place	at	all	among
the	first	Pythagoreans.	Whether	numbers	were	independent	of	physical	reality,	or
how	independent,	were	not	questions	they	would	have	thought	to	ask.

In	his	attempt	to	squeeze	the	Pythagoreans	into	Plato’s	and	his	own	molds,
Aristotle	overinterpreted	them	and	became	particularly	ill	at	ease	with	the	idea
that	all	things	“are	numbers.”	The	Pythagoreans,	he	reported	with	chagrin,
believed	that	numbers	were	not	merely	the	design	of	the	universe.	They	were	the
building	blocks,	both	the	“material	and	formal	causes”	of	things.	Physical	bodies
were	constructed	of	numbers.	Aristotle	threw	up	his	hands:	“They	appear	to	be
talking	about	some	other	universe	and	other	bodies,	not	those	that	we	perceive.”



As	Aristotle	understood	the	Pythagorean	connection	between	numbers	and
creation,	for	numbers	to	exist,	there	first	had	to	be	the	distinction	between	even
and	odd—the	“elements”	of	number.	The	One	had	a	share	in	both	even	and	odd
and	“arose”	out	of	this	primal	cosmic	opposition.*	The	One	was	not	an	abstract
concept.	It	was,	physically,	everything.	Aristotle	was	puzzled	by	that	idea,	and
unhappy	with	it.

Odd	was	“limited”;	even	was	“unlimited.”	As	the	unlimited	“penetrated”	the
limited,	the	One	became	a	2	and	then	a	3	and	then	larger	numbers.*	This
emergence	of	numerical	organization	resulted	in	the	universe	humans	know.	In
Aristotle’s	words	(he	was	still	rankled	by	the	“substance”	of	the	One):

They	say	clearly	that	when	the	One	had	been	constructed—
whether	of	planes	or	surface	or	seed	or	something	they	cannot
express—then	immediately	the	nearest	part	of	the	Unlimited
began	“to	be	drawn	and	limited	by	the	Limited”	.	.	.	giving	it	[the
Unlimited]	numerical	structure.

Aristotle	had	found	that,	at	least	in	its	broad	outlines,	the	numerical	creation
of	the	universe	was	a	pre-Platonic	Pythagorean	concept.	However,	he	often
regarded	the	Pythagoreans	with	a	frown	of	frustration,	like	a	professor	faced
with	brilliant	students	who	have	disappointed	him.	Though	he	was,	in	fact,	not
consistent	in	the	way	he	described	Pythagorean	ideas	about	numbers,	and	was
never	able	to	define	what	he	thought	“speak	like	a	Pythagorean”	and	say	“the
One	is	substance”	meant,	it	is	clear	that	he	feared	theirs	was	a	sadly	earthbound,
material	view.	“The	Pythagoreans	introduced	principles,”	said	he,	that	could
have	led	them	beyond	the	perceptible	world	to	the	higher	realms	of	Being,	but
then	they	only	used	them	for	what	is	perceptible,	and	“squandered”	their
principles	on	the	world	itself	as	though	nothing	else	existed	besides	“what	the
sky	encloses.”3

His	was,	in	truth,	an	earthbound	interpretation	of	the	Pythagoreans.	Their
attempt	to	give	numbers	a	physical	role	in	creation	may	look	as	naive	to	us	as	it
did	to	him,	but	they	faced	difficult	questions:	What	were	numbers,	really?	What
was	their	role—their	power—in	creating,	sustaining,	and	controlling	the	physical
universe?	Those	questions	have	never	been	answered.	Humans	have	all	but
given	up	on	them.	If	numbers	underlie,	even	constrain,	physical	reality,	as	the
Pythagoreans	thought	was	the	case,	then	where,	precisely,	is	the	connection?
How	do	mathematics	and	geometry	exert	their	grip	on	the	universe?	The
Pythagoreans	tried	to	find	ways	to	answer	such	questions,	and	at	the	root	of	their



thinking,	spanning	the	years	that	led	to	the	time	of	Aristotle,	lay	that	first
realization	that	“what	the	sky	encloses”	was	much	more	mysteriously	and
wondrously	interconnected	and	infused	with	rationality	than	anyone	had
recognized	before.4	A	cosmos	governed	by	numbers—no	matter	how	everyday-
perceptible	it	also	was,	or	whether	you	could	figure	out	how	it	got	built—was	a
mind-haunted	cosmos.	Where	to	go	from	there,	with	this	treasure	that	had	fallen
into	their	hands?	That	was	new,	unknown	territory,	and	the	Pythagorean
exploration	of	it	was	always	a	work	in	progress.

In	an	age	when	abstract	thinking	was	supposed	to	be	more	prevalent	than	in
the	sixth	century	B.C.,	Aristotle	seems,	in	his	interpretation	of	the	Pythagoreans
and	his	frustration	with	some	of	their	ideas,	to	have	been	insisting,	for	them,	that
they	thought	of	numbers	only	as	something	concrete	and	physical.	He	was
apparently	blind	to	any	other	way	of	interpreting	their	thoughts	and	would	allow
them	little	sophistication	and	subtlety.	Complicating	this	issue,	the	Greeks	used
the	same	word	for	“same”	and	“similar,”	making	it	difficult	even	to	have	a
meaningful	disagreement	about	whether	the	Pythagoreans	meant	a	number	was
something	or	was	“something	like	it”	or	was	a	symbol	for	it.

Aristotle	summed	up	his	interpretation	of	the	Pythagorean	view	of	numbers
more	sympathetically	in	two	statements:	“Having	been	brought	up	in	it
[mathematics],	they	came	to	believe	that	its	principles	are	the	principles	of
existing	things.”	And	(transmitted	through	Iamblichus)	“Whoever	wishes	to
comprehend	the	true	nature	of	actual	things,	should	turn	his	attention	to	these
things,	the	numbers	and	proportions,	because	it	is	by	them	that	everything	is
made	clear.”	As	Burkert	paraphrased	Aristotle’s	Metaphysics:	“Number	is	that
about	things	which	can,	with	a	claim	to	truth,	be	expressed;	nothing	is	known
without	number.”

One	approach	the	Pythagoreans	had	taken,	Aristotle	found,	was	to	express
the	creation	process	in	a	“table	of	opposites.”

Limited Unlimited	(recall	that	the	One,	when	it	arises,	will	have	a
share	in	both)

odd even	(recall	that	the	One	will	be	both	odd	and	even)

One plurality

right left

male female

moving



resting moving

straight crooked

light darkness

good bad

square oblong

Nothing	in	the	table	could	be	linked	with	Plato’s	Indefinite	Dyad	in	a	clear	way.
In	Plato’s	creation	scheme	the	One	and	the	Indefinite	Dyad	were	there	first,	with
limit	and	unlimited	“inherent	in	their	nature.”	On	these	points,	if	Aristotle’s
interpretation	was	correct,	Plato	chose	not	to	follow	the	Pythagoreans,
misunderstood	them,	or	transformed	their	ideas	to	suit	himself.

The	Pythagoreans	apparently	thought	creation	had	to	involve	both	drawing
together	(of	the	limiting	and	the	unlimited)	and	separation	(as	numbers	and	pairs
of	opposites	arose	from	the	One),	and	the	universe	could	only	exist	if	things
were	different	from	one	another—an	idea	found	in	many	ancient	creation
accounts.	In	Genesis,	God	separated	light	from	darkness,	the	water	above	the
earth	from	the	water	below	the	earth,	and	sea	from	dry	land;	Adam	and	Eve	ate
from	the	tree	of	the	“knowledge	of	good	and	evil.”	In	Aristotle’s	interpretation
of	the	Pythagoreans,	the	One	was	not	undifferentiated	unity,	like	the	unlimited.
It	was	harmony	of	many	different	things	whose	differences	were	necessary	in
order	for	anything	to	exist	in	the	way	humans	experience	the	world.*

Disappointingly,	Aristotle	did	not	really	answer	the	question	whether	Plato’s
view	of	the	relationship	between	the	ideal	and	the	material	world	was	derivative
of	the	Pythagoreans,	or	original,	or	somewhere	in	between.	What	Aristotle
concluded	has	hung	in	the	air	for	centuries,	with	the	answer	depending	on	what
he	meant	by	one	ambiguous	Greek	sentence.	Burkert	cut	to	the	heart	of	the
matter:

Again	and	again	it	becomes	clear	that	the	Pythagorean	doctrine
cannot	be	expressed	in	Aristotle’s	terminology.	Their	numbers
are	“mathematical”	and	yet,	in	view	of	their	spatial,	concrete
nature,	they	are	not.	They	“seem”	to	be	conceived	as	matter	and
yet	they	are	something	like	Form.	They	are,	in	themselves,	Being,
and	yet	are	not	quite	so.5

Guthrie	put	it	more	simply:	“By	the	use	of	his	own	terminology,	Aristotle



imports	an	unnecessary	confusion	into	the	thought	of	the	early	Pythagoreans.	It
is	no	use	his	putting	the	question	whether	they	employ	numbers	as	the	‘material’
or	the	‘formal’	causes	of	things,	since	they	were	innocent	of	the	distinction.”6

Aristotle	gave	what	is	probably	the	most	reliable	description	of	the	pre-
Platonic	Pythagorean	concept	of	“music	of	the	spheres,”	grumbling	that	“it	does
not	contain	the	truth,”	though	he	admitted	it	was	“ingeniously	and	brilliantly
formulated.”	He	explained	that	the	Pythagoreans	realized	that	all	harmonious-
sounding	musical	intervals	were	the	result	of	certain	numerical	ratios	in	the
tuning	of	an	instrument,	so	“number”	was	“harmony.”	The	same	numerical
ratios	determined	the	arrangement	of	the	cosmic	bodies,	resulting	in	a	“harmony
of	the	spheres.”	Here,	said	Aristotle,	was	“what	puzzled	the	Pythagoreans	and
made	them	postulate	a	musical	harmony	for	the	moving	bodies”:

It	seems	that	bodies	so	great	must	inevitably	produce	a	sound	by
their	movement.	Even	bodies	on	Earth	do	that,	although	they	are
not	so	great	in	bulk	or	moving	at	so	high	a	speed,	or	so	many	in
number	and	enormous	in	size,	all	moving	at	a	tremendous	speed.
It	is	unthinkable	that	they	should	fail	to	produce	a	noise	of
surpassing	loudness.	Taking	this	as	their	hypothesis,	and	also	that
the	speeds	of	the	stars,	judging	from	their	distances,	are	in	the
ratios	of	the	musical	consonances,	they	affirm	that	the	sound	of
the	stars	as	they	revolve	is	concordant.

Some	heavenly	bodies	appear	to	move	faster	than	others.	Aristotle	wrote
that	the	Pythagoreans	had	arrived	at	the	idea	that	the	faster	the	motion,	the
higher	the	pitch	it	produced,	and	they	had	taken	this	into	consideration	when
allowing	the	ratios	of	the	relative	distances	between	the	bodies	to	correspond	to
musical	intervals.	With	the	full	complement	of	heavenly	bodies,	the	result	was	a
complete	octave	of	the	diatonic	scale.*

What	surprises	is	that	Aristotle	or	anyone	could	think	the	eight	notes	of	the
scale	heard	simultaneously	would	be	harmonious.	The	sound	would	not	be
beautiful.	There	would	be	cacophony	in	the	heavens.	Humans	should	be	glad
they	cannot	hear	it.	Pity	Pythagoras,	who,	legend	says,	could!	The	explanation
cannot	be	that	harmonia	did	not	imply	audible	sound,	for	Aristotle	thought	the
Pythagoreans	believed	planetary	movement	produced	actual	tones.	He	never
explained	how	it	could	be	beautiful,	but	he	did	give	what	he	thought	was	the
Pythagorean	explanation—different	from	Archytas’—for	why	ordinary	humans
do	not	hear	it:



To	solve	the	difficulty	that	no	one	is	aware	of	this	sound,	they
account	for	it	by	saying	that	the	sound	is	with	us	right	from	birth
and	has	thus	no	contrasting	silence	to	show	it	up;	for	voice	and
silence	are	perceived	by	contrast	with	each	other,	and	so	all
mankind	is	undergoing	an	experience	like	that	of	a	coppersmith,
who	becomes	by	long	habit	indifferent	to	the	din	around	him.

AT	THE	TIME	of	Aristotle	and	in	later	antiquity,	it	was	generally	assumed	that	if
one	mentioned	“Pythagorean	mathematics,”	an	educated	person	would	know
what	that	meant,	but	in	fact	the	meaning	was	vague,	apparently	referring	to	a
tradition	that	thought	it	inspiring	to	discover	hidden,	true	relationships	of	the	sort
that,	once	found,	seemed	inevitable.	Since	the	evidence	about	what	sixth-and
fifth-century	Pythagorean	mathematics	were	like	is	so	sparse,	we	are	at	a	loss	to
know	how	authentically	Pythagorean	this	so-called	Pythagorean	mathematics
was.	To	modern	eyes,	its	vestiges	seem	feeble	by	comparison	with	Euclid’s
Elements,	which	appeared	around	300	B.C.	Did	it	really	reflect	a	naive
mathematics	of	Pythagoras	himself,	and	his	associates?	Or	was	it	“a	dilute,
popularized	selection	from	what	had	been	originally	a	rigorous	mathematical
system”?7	Perhaps	it	was	a	hodgepodge	of	what	survived	from	early,	primitive
mathematical	thought	from	several	sources,	mistakenly	lumped	under	the
heading	“Pythagorean”?	Maybe	a	much	more	authentically	Pythagorean,	lively
mathematici	heritage	had	moved	through	Archytas	to	influence	Euclid,	while
this	older,	calcified,	fading	mathematics	limped	alongside,	still	bearing	the	name
“Pythagorean.”

There	are	also	differences	of	opinion	about	whether	there	is	valid	reason	to
call	the	five	regular	solids	that	Plato	featured	“Pythagorean”	solids.8*	The	issue
is	not	a	simple	one,	for	“knowing	about”	the	solids,	or	“discovering”	them,	or
“trying	to	figure	them	out,”	are	not	the	same	as	“giving	them	a	full	mathematical
description”	or	being	able	to	prove	that	they	are	the	only	possible	perfect	solids.
It	is	uncertain	which	achievement	deserves	to	be	rewarded	with	having	one’s
name	attached	to	it.

Arguing	in	favor	of	early	Pythagorean	knowledge	of	the	solids	is	the	fact
that	these	shapes	were	familiar	in	nature	and	construction.	Cubes	(and	pyramids,
for	anyone	who	had	been	to	Egypt)	were	familiar	building	shapes,	though
pyramids	often	were	five-sided	including	the	base,	not	four-sided	tetrahedra.	A
dodecahedron	dating	from	at	least	as	early	as	Pythagoras,	apparently	Etruscan,
has	been	discovered	near	Padua.	Pyrite	crystals	appear	as	cubes	and	also,	in
southern	Italy	and	on	the	isle	of	Elba,	in	the	form	of	dodecahedra.9	A	fluorite



crystal	is	an	octahedron;	quartz	crystals	are	pyramids	and	double	pyramids;
garnet	crystals,	dodecahedra.	Pythagoras	would	have	known	about	gems	and
crystals	if	his	father	really	was	a	gem	engraver,	and	someone	with	a	Pythagorean
cast	of	mind	would	surely	have	been	curious	about	regular,	beautiful	shapes	that
appear	without	any	human	intervention.	It	would	have	been	in	keeping	for
someone	obsessed	with	numbers	to	try	to	understand	them	by	means	of	numbers.

Also	favoring	an	early	Pythagorean	knowledge	of	them	is	that,	if	the
fragment	is	genuine,	fifty	to	a	hundred	years	after	Pythagoras’	death	Philolaus
knew	about	the	five	regular	solids	but	was	almost	certainly	not,	himself,	their
discoverer.	In	the	absence	of	evidence	to	show	who	did	or	did	not	discover	them,
it	is	not	far-fetched	to	think	the	five	regular	solids	might	legitimately	be	called
Pythagorean.

Plato	associated	four	of	the	five	solids	with	the	four	elements	in	his
Timaeus,	as	had	Philolaus	in	the	fragment	that	read,	“The	bodies	in	the	sphere
are	five:	fire,	water,	earth,	and	air,	and	fifthly	the	hull	of	the	sphere”†	But	had
anyone	made	that	association	earlier?	The	scholar	Aëtius,	of	the	second	century
A.D.,	thought	Pythagoras	had:

There	being	five	solid	figures,	called	the	mathematical	solids,
Pythagoras	says	earth	is	made	from	the	cube,	fire	from	the
pyramid,	air	from	the	octahedron,	and	water	from	the
icosahedron,	and	from	the	dodecahedron	is	made	the	“sphere	of
the	whole.”10

Since	“Pythagoras	says”	was	used	for	what	Pythagoras’	followers	said,	the
attribution	should	probably	be	read	as	“the	Pythagoreans	said.”	Aëtius	got	his
information	from	Theophrastus,	a	pupil	of	Aristotle	who	may	have	been
contradicting	his	teacher,	for	Aristotle	scoffed	that	the	Pythagoreans	had
“nothing	new	to	add”	to	knowledge	about	the	elements.	However,	Aristotle	had
so	little	respect	for	the	idea	of	associating	elements	with	solids	that	even	if
irrefutable	evidence	had	existed	that	the	association	originated	with	the
Pythagoreans	he	would	still	have	dismissed	it	as	“nothing	new	to	add.”	Little
survives	of	Theophrastus’	history	of	philosophy	or	of	the	books	he	wrote	about
individual	philosophers,	but	more	would	have	been	available	when	Aëtius	was
doing	his	research.	However,	though	Philolaus’	fragment	associated	the
elements	with	the	solids,	and	the	solids	might	have	been	known	to	earlier
Pythagoreans,	the	identification	of	the	four	elements	as	fire,	water,	earth,	and	air
did	not	originate	with	them.	Philolaus	was	evidently	familiar	with	the	idea	from



his	older	contemporary,	the	Sicilian	poet-philosopher	Empedocles,	born	ten
years	after	Pythagoras’	death.*

The	question	whether	the	Pythagoreans	thought	of	a	point	as	having
magnitude	seems	trivial,	but	it	is	related	to	the	question	of	who	first	knew	about
the	solids.	Zeno,	one	of	the	Eleatics,	reputedly	scorned	the	Pythagoreans	for
naively	thinking	that	a	point	had	dimensions	like	a	pebble	and	that	two	points
(pebbles)	touching	one	another	made	a	line,	but	that	way	of	thinking	made	the
pyramid	easy	to	“discover”	by	building	a	little	pebble	structure.	The	Pythagorean
preoccupation	with	the	numbers	1,	2,	3,	and	4	makes	it	difficult	to	believe	they
did	not	extend	their	progression	past	making	a	triangle	with	three	pebbles	to
building	a	little	pyramid	with	four,	or	better	yet	a	larger	one	with	10,	the	perfect
number.

Speusippus,	Plato’s	pupil	and	nephew,	attributed	the	point–line–surface–
solid	progression	to	Pythagoreans	before	Archytas.	It	was	a	more	primitive	way
of	arriving	at	a	solid	than	Archytas’	use	of	“movement.”	Even	the	use	of
movement	may	have	come	before	Archytas,	and	leads	easily	to	a	square	and
cube.	An	example	appears	in	a	reference	from	the	Skeptic	philosopher	Sextus
Empiricus,	who	flourished	at	the	turn	of	the	second	to	the	third	century	A.D.	He
called	this	a	“scheme	of	the	Pythagoreans”:	“Some	say	that	body	is	formed	from
one	point.	This	point	by	flowing	produces	a	line,	the	line	by	flowing	makes	a
surface,	and	this	when	moved	into	depth	generates	a	body	in	three
dimensions.”11

The	sophistication	of	geometry	in	a	Pythagorean	community	a	little	more
than	a	century	after	Pythagoras’	death—as	witness	Archytas’	solution	for
doubling	the	cube—makes	it	ludicrous	to	insist	that	earlier	Pythagoreans	could
not	have	discovered	the	five	regular	solids.	Nevertheless,	the	man	who	first
arrived	at	a	complete	mathematical	understanding	of	them	was	not	a
Pythagorean.	He	was	Theaetetus,	a	friend	of	Plato	who	was	killed	in	369	B.C.
Whatever	was	known	about	the	regular	solids	earlier,	Theaetetus,	with	his
description	of	the	octahedron	and	the	icosahedron,	finished	the	job.



In	the	end,	in	spite	of	differing	viewpoints	about	the	solids	and	the
“Pythagorean	mathematics”	of	late	antiquity,	there	is	widespread	consensus	that
the	first	Pythagoreans	opened	up	a	new	way	of	thinking	about,	appreciating,	and
using	numbers,	representing	a	watershed	and	having	very	long	lasting	impact.
Their	profound	musical/mathematical	discovery	was	as	modern	as	tomorrow’s
science	news,	as	timeless	as	any	discovery	ever	made,	but	most	of	the	true
mathematical	connections	and	relationships	in	nature	were	hidden	too	deep	for
them	to	find.	Even	Kepler,	in	the	sixteenth	century	A.D.,	with	a	Pythagorean
certainty	that	such	relationships	existed,	spent	a	good	part	of	his	lifetime
searching	for	them	on	too	superficial	a	level	and	was	surprised	when	he	had	to
admit	that	nature	followed	her	own	far	cleverer	mathematics,	not	his.	In	spite	of
the	Pythagorean	faith	in	the	power	of	numbers,	they	had	no	inkling	of	how	far
numbers	would	lead	humankind.	Working	out	the	implications	of	their	discovery
would	take	centuries.

ALONG	WITH	ARISTOTLE,	three	other	authors	who	lived	during	the	latter	part	of
the	fourth	century	B.C.	were	the	earliest	and	most	reliable	sources	used	by
Porphyry	and	Iamblichus.	They	were	Heracleides	Ponticus,	of	Plato’s	Academy,
and	Aristoxenus	of	Tarentum	and	Dicaearchus	of	Messina,	both	Aristotle’s
pupils.	Heracleides	Ponticus,	like	Plato,	wrote	dialogues.	He	used	the	character
“Pythagoras”	as	a	spokesman,	telling	stories	about	his	former	lives	and	calling
himself	philosophos,	lover	of	wisdom.	Other	Pythagoreans	in	the	dialogues,
Hicetas	and	Ecphantus,	taught	that	the	Earth	rotates.*	Heracleides	believed	that
the	Earth	rotates,	and	that	this	makes	it	appear	to	humans	as	though	the	stars	are
moving.†

Dicaearchus	was	Porphyry’s	and	Iamblichus’	source	about	Pythagoras’
arrival	in	Croton	and	his	success	among	the	young	men,	the	city	rulers,	and	the
women.	Dicaearchus	claimed	that	in	his	own	time	the	memory	of	the	revolts	that
ended	Pythagorean	rule	was	still	vivid	in	Magna	Graecia.	He	revered	Pythagoras
as	a	moral	teacher	and	social	reformer,	but	he	believed	in	no	sort	of	immortality
and	scorned	the	idea	that	anyone	could	remember	former	lives,	joking	that
Pythagoras	had	been	a	beautiful	courtesan	in	one	reincarnation.	A	man	of
extensive	learning	and	a	scientist	with	an	independent	turn	of	mind,	an	admirer
of	Pythagoras	and	yet	not	an	unqualified	admirer,	Dicaearchus	had	his	ear	to	the
ground	at	a	time	when	the	oral	record	could	be	extremely	trustworthy,	in	the
region	where	Pythagoras	had	lived	and	flourished—all	of	which	increases	the
likelihood	that	what	he	reported	was	genuine.

Aristoxenus,	like	Dicaearchus,	did	not	toe	the	Pythagorean	line	precisely.	He



dismissed	the	idea	of	the	soul	being	more	than	a	harmony	of	the	body’s	various
components,	and	his	music	theory	took	a	different	direction	from	Archytas’.	The
information	Porphyry	and	Iamblichus	attributed	to	Aristoxenus	probably	came
from	his	biography	of	Pythagoras—thought	to	have	been	the	first	written—but
neither	Porphyry	nor	Iamblichus	ever	actually	saw	Aristoxenus’	and
Dicaearchus’	books.*	The	information	they	took	from	them	came	indirectly,
through	other	writers	who	lived	during	the	centuries	in	between.

After	Aristotle	there	were	no	attempts	in	antiquity	to	draw	a	distinction
between	pre-Platonic	Pythagorean	doctrine	and	Plato.	Beginning	with	Plato’s
pupils	Speusippus	and	Xenocrates,	no	one	for	centuries	would	make	a	distinction
between	Platonism	and	Pythagoreanism	at	all.	Almost	without	exception,
everyone	would	accept	what	Plato	taught	in	his	Timaeus	and	his	“oral	doctrine”
(reported	by	Aristotle)	as	the	teaching	of	the	early	Pythagoreans.	In	the	eyes	of
the	educated	world,	Plato	was	a	Pythagorean.

BY	THE	TURN	of	the	centurY	in	300	B.C.,	the	world	of	classical	Greece,	of	Plato
and	Aristotle,	and	of	strong	and	often	warring	city-states	like	Athens,	Sparta,	and
Thebes	had	ended.12	The	rise	of	a	power	from	the	north—the	kingdom	of	Philip
the	Great	of	Macedonia—was	heralding	a	new	era.	Less	than	forty	years	after
Philip	had	become	king	of	Macedonia	in	359,	his	son	(traditionally	Aristotle’s
pupil)	Alexander	the	Great	had	conquered	not	only	Greece	but	also	Egypt	and
the	entire	Persian	empire	to	the	east,	as	far	as	present-day	Afghanistan,	Pakistan,
and	the	Indus	River.	The	culture	and	learning	of	Greece	and	its	colonies	and	of
the	conquered	peoples	mixed	and,	to	an	impressive	extent,	enriched	one	another.

After	Alexander	died	in	323	B.C.,	though	the	city-states	had	not	vanished
entirely	and	change	was	slow	in	remoter	regions	such	as	Magna	Graecia,	his
short-lived	and	sprawling	empire	became	three	“successor	states”	under	his
former	generals	and	associates.	Mainland	Greece	became	part	of	Macedon.	The
Seleucid	dynasty	controlled	Syria.	Egypt	was	ruled	by	the	Ptolemies,	the	dynasty
that	would	later	include	Cleopatra.	At	the	time	of	Alexander’s	death	(and
Aristotle’s,	for	he	died	a	year	later,	in	322),	Athens	was	still	the	hub	of	the
intellectual	world,	but	Alexandria,	with	the	wealth	of	the	Ptolemys	lavished	on
literature,	the	arts,	mathematics,	science,	and	a	library	and	museum	would	soon
rival	and	eventually	eclipse	her.

Around	300	B.C.,	Euclid,	who	lived	in	Alexandria,	gave	mathematics	and
geometry	a	new	form	of	life,	surpassing	all	others	in	antiquity	for	putting	the
power	of	numbers	to	use	in	a	truly	significant	and	comprehensive	manner.
Euclid	personified	the	Pythagorean	intellectual	and	philosophical	conviction	that



mathematics	was	a	precious	guide	to	truth,	and	he	was	even	known	to	use	a
Pythagorean	aphorism,	but	he	did	not	consider	himself	a	Pythagorean	nor	did	he
belong	to	a	Pythagorean	community.*

Euclid	in	a	sixteenth-century	engraving

Euclid’s	Elements	is	one	of	the	premier	intellectual	achievements	of	all	time,
foundational	for	later	mathematicians	and	geometers.	It	was	both	a
comprehensive	summary	and	treatment	of	what	had	been	discovered	before	him,
and	wondrously	original,	and	Euclid	did	not	clearly	distinguish	between	what
was	new	and	what	was	old.	He	knew	the	Pythagorean	theorem	and	included	it	in
Book	I	as	“Proposition	47,”	never	referring	to	it	as	“Pythagorean”	but	also	never
claiming	it	was	his	own	discovery	or	mentioning	another	origin.	His	knowledge
of	early	Pythagorean	mathematics	and	astronomy	appears	to	have	come	mostly
through	Archytas,	though	modern	experts	who	have	analyzed	the	Elements
believe	that	many	of	the	results	which	appear	in	it13	predated	Archytas,	and	that
some	of	the	material	was	extremely	old.14	Archytas	had	previously	built	on	some
of	this	earlier	work,	and	his	discoveries,	particularly	his	number	theory,	were
incorporated	by	Euclid	in	the	Elements	Book	VIII.



By	Euclid’s	standards,	a	feeling	of	inevitability	and	a	few	examples	did	not
constitute	a	“proof.”	The	so-called	Pythagorean	mathematics	of	his	own
contemporaries	did	not	fall	in	happily	with	his	higher	abstraction.15	That
tradition	nevertheless	wheezed	along	and	proved	tenacious	beyond	all
expectation.	Iamblichus	preferred	it:

Pythagorean	mathematics	is	not	like	the	mathematics	pursued	by
the	many.	For	the	latter	is	largely	technical	and	does	not	have	a
single	goal,	or	aim	at	the	beautiful	and	the	good,	but	Pythagorean
mathematics	is	preeminently	theoretical;	it	leads	its	theorems
toward	one	end,	adapting	all	its	assertions	to	the	beautiful	and	the
good,	and	using	them	to	conduce	to	being.16

Though	Euclid	was	translated	into	Latin	and	not	unknown	in	the	Middle	Ages,
the	premier	mathematical	textbook	of	those	later	centuries	would	be	in	the
“Pythagorean”	mathematical	tradition,	not	his.*	However,	and	in	spite	of
Iamblichus’	opinion,	Euclid’s	Elements	resonates	with	joy	and	appreciation	for
the	beauty	of	the	subject	he	was	exploring	as	no	one	had	before.	Though	modern
mathematicians	still	carry	forward	the	ancient	Pythagorean/Platonic	belief	in	the
beautiful	rationality	of	numbers,	and	even	tend	to	be	suspicious	of	anything
claiming	to	be	mathematical	truth	that	is	not	beautiful,	it	is	Euclidean	technical
rigor	that	guards	the	gate	of	beauty.



CHAPTER	11

The	Roman	Pythagoras
Third,	Second,	and	First	Centuries	B.C.

IN	ROME	IN	THE	SECOND	and	first	centuries	B.C.	there	was	a	popular	legend	that
Numa,	the	wisest	and	most	powerful	of	Rome’s	ancient	kings,	had	been	a
disciple	of	Pythagoras.	This	was	not	possible.	Dates	in	the	city’s	early	history
were	under	debate,	but	no	amount	of	fuzziness	or	fudging	could	change	the	fact
that	Numa	died	at	least	140	years	before	Pythagoras	came	to	Croton.	The	Roman
lawyer	and	orator	Marcus	Tullius	Cicero	made	that	clear	in	his	Republic:*

MANILIUS:	Is	it	an	authentic	tradition,	Africanus,	that	King	Numa,	was	a
pupil	of	Pythagoras,	or	at	least	a	Pythagorean?	This	assertion	has
often	been	made	by	our	elders,	and	one	gathers	that	the	opinion	is
widely	held.	Yet	an	inspection	of	the	public	records	shows	that	it	is
not	properly	documented.

SCIPIO:	No,	Manilius.	The	whole	thing	is	quite	wrong,	not	only	a
fabrication	but	a	clumsy	and	absurd	fabrication	too	(it	is
particularly	hard	to	tolerate	the	kind	of	falsehood	that	is	not	just
untrue	but	patently	impossible).	Research	has	established	that	it
was	when	Lucius	Tarquinius	Superbus	had	been	on	the	throne	for
over	three	years	that	Pythagoras	came	to	Sybaris,	Croton	and	that
part	of	Italy.	The	Sixty-second	Olympiad	witnessed	both	the
beginning	of	Superbus’	reign	and	the	arrival	of	Pythagoras.	When
the	years	of	the	kings	have	been	added	up	it	follows	that
Pythagoras	first	reached	Italy	about	a	hundred	and	forty	years	after
Numa’s	death.	No	doubt	has	ever	been	cast	on	this	conclusion	by
the	experts	in	chronological	research.

MANILIUS:	Ye	gods!	What	a	gigantic	howler!1

Nevertheless,	Numa’s	discipleship	made	a	good	story	and	represented
widespread	wishful	thinking—that	Rome	could	claim	a	direct	link	with
Pythagoras.	Cicero	himself	liked	the	idea:



For	who	can	think,	when	Magna	Graecia	flourished	in	Italy	with
most	powerful	and	populous	cities,	and	when	in	these	the	name,
first	of	Pythagoras	himself,	and	then	of	the	Pythagoreans
afterwards,	sounded	so	high,	that	the	ears	of	our	own	countrymen
were	closed	to	the	most	eloquent	voice	of	wisdom?	Indeed	I	think
it	was	because	of	their	admiration	for	Pythagoras,	that	Numa	the
king	was	reputed	to	be	a	Pythagorean	by	posterity;	for,	knowing
the	system	and	institutions	of	Pythagoras	and	having	from	their
ancestors	the	renown	of	that	king	for	wisdom	and	integrity—but
ignorant,	through	distance,	of	ages	and	times—they	inferred	that,
because	he	excelled	in	wisdom,	he	was	the	disciple	of
Pythagoras.2

Cicero	was	avidly	interested	in	Pythagoras.	That	a	great	man	of	mathematics	and
philosophy	had	also	reputedly	been	an	effective	civic	leader—though	no
specifics	were	known	about	his	leadership	methods	or	activities—was
particularly	appealing.	Cicero	was	a	prolific	author	but	considered	writing	a	poor
second	to	his	active	public	career.

The	connection	with	Numa	was	by	no	means	the	only	bit	of	fiction	and
semi-fiction	about	Pythagoras	that	was	current	in	Cicero’s	Rome.	The	Roman
vision	of	Pythagoras	was	an	amazing	mixture	of	Plato	with	unfounded	legends
and	assumptions—undergirded	by	blatant	forgeries—and	various	shades	of
interpretation	and	misinterpretation.	Pythagoras’	name	had	been	familiar	to	the
Roman	public	at	least	since	the	early	years	of	the	third	century	B.C.	In	the	years
298	to	290	B.C.,	Rome	was	struggling	for	the	third	time	to	conquer	the	Samnite
tribes	in	the	central	and	southern	Apennine	mountains	that	form	the	spine	of	the
Italian	peninsula.	The	Samnites	were	tough	warriors	desperately	defending
brutally	rugged	terrain	that	was	their	familiar	home	ground.	When	the	conflict
was	going	particularly	badly	for	the	Romans,	they	cunningly	adopted	the
military	formation	that	their	enemy	were	using	so	successfully,	a	checkerboard
pattern	in	which	solid,	tight	squares	of	soldiers	alternated	with	square	empty
spaces.*	They	also	consulted	the	Oracle	at	Delphi,	which	told	Rome	to	honor	the
wisest	and	bravest	of	the	Greeks.	Responding	to	this	rather	insulting	order,	the
Romans	chose	two	figures	who	were	not	exactly	those	a	Greek	would	have
chosen:	Alcibiades,	a	notoriously	opportunistic	military	and	political	genius	who
had	once	been	a	student	of	Socrates	and	had	often	been	a	thorn	in	the	flesh	to	the
Greeks	of	his	era;	and	Pythagoras,	whom	Rome	preferred	to	regard	as	more
Italian	than	Greek.†	The	oracle	must	have	been	satisfied,	for	Rome	subdued	the



Samnites.	The	statue	of	Pythagoras	in	the	Forum	stood	for	two	centuries,	until
the	construction	of	a	new	Senate	necessitated	its	removal,	probably	when	Cicero
was	in	his	late	teens.3

By	the	mid-second	century	B.C.,	Rome	controlled	the	entire	eastern
Mediterranean,	and	in	Greece,	Egypt,	and	Asia	Minor,	Romans	were
encountering	some	of	the	highest	and	most	ancient	cultures	in	the	world.	To	their
credit,	for	the	most	part	they	did	not	look	upon	these	as	the	outdated,	easily
dismissed,	quaint	cultures	of	conquered	inferiors,	but	rather	chose	to	regard	the
older	societies	as	guardians	of	a	valuable	legacy	to	which	Rome	had	now
become	the	heir.

The	most	significant	and	long-lasting	influence	was	from	the	Greeks.	The
Roman	military	brought	home	works	of	art,	slaves	who	were	much	better
educated	than	they,	and	a	new	thirst	for	knowledge	and	ideas.	Before	long,
upper-class	Romans	were	avidly	reading	Greek	works	in	translation	and	even	in
the	original,	for	many	were	becoming	bilingual.	Roman	parents	sought	out
educated	Greek	slaves	to	tutor	their	children,	and	young	men	traveled	to	Greece
for	part	of	their	schooling.	Cicero	studied	philosophy	and	oratory	in	Athens	and
Rhodes.	Authors,	artists,	sculptors,	philosophers,	and	architects	who	could	match
the	standards	of	Greek	achievements,	or	at	least	do	a	fair	job	of	copying	them,
were	in	high	demand.	Though	state	business	continued	to	be	carried	on	in	Latin,
hardly	any	part	of	Roman	life	escaped	this	peaceful,	sophisticated
counterconquest.	In	the	midst	of	what	was	rapidly	becoming	not	a	Roman	but	a
Greco-Roman	culture,	Pythagoras,	an	almost	homegrown	ancient	intellectual
giant,	of	mythical	stature	throughout	both	the	Greek	and	Italian	world,	was	a
Roman	treasure.	This	was	“Italian”	philosophy.	Aristotle	himself	had	called	it
that.

The	poet	Ennius—whom	later	generations	would	call	the	father	of	Latin
poetry—also	helped	provide	Rome	with	a	much-needed	cultural	self-image	that
involved	Pythagoras.	One	of	Ennius’	immensely	successful	poems	and	dramas
was	a	lengthy	historical	epic	called	the	Annales,	purporting	to	trace	Roman
history	to	the	fall	of	Troy.	In	it,	Ennius	presented	his	credentials	as	the	successor
to	Homer	by	describing	a	dream	in	which	that	great	Greek	poet	appeared	to	him
on	Mount	Parnassus	and	told	him	that	in	a	former	life	he,	Ennius,	had	been
Homer	himself.	This	dream	was	symbolic	and	symptomatic	of	Rome’s	vision	of
herself	as	the	heir	to	Greek	culture,	but	it	did	not	represent	orthodox	Roman	or
Greek	doctrine	regarding	the	afterlife.	It	was	instead	a	nod	to	Pythagoras	and	the
doctrine	of	reincarnation.	In	a	satirical	poem,	Epicharmus—the	name	was	that	of
a	Sicilian	Pythagorean	comic	poet—Ennius	described	another	distinctly



Pythagorean	dream	about	what	would	happen	after	his	death,	in	a	place	of	divine
enlightenment.

Ennius	was	a	member	of	the	staff	of	the	Roman	consul	Marcus	Fulvius
Nobilior,	which	gave	him	yet	another	Pythagorean	connection.	Fulvius	had
returned	from	military	campaigns	in	the	eastern	Mediterranean	with	a	passion
for	Greek	culture	and	laden	with	captured	artistic	treasures.	He	authored	a	work
called	De	Fastie	that	was	probably	the	original	source	of	a	passage	claiming	to
be	“what	Fulvius	reported	from	Numa,”	implying	something	genuinely
Pythagorean	since	Numa,	of	course,	was	the	early	king	who	was	supposed	to
have	studied	with	Pythagoras.	Fulvius’	book	in	fact	owed	a	great	deal	to	Plato’s
Timaeus,	which	at	the	time	was	almost	universally	regarded	as	Pythagorean
doctrine.

At	the	time	of	Ennius	and	Fulvius,	a	cult	appears	to	have	existed	in	Rome
and/or	Alexandria	whose	members	followed	what	they	believed	were	the	ritual
practices	and	lifestyle	of	the	acusmatici.	A	book	had	appeared	entitled	the
Pythagorean	Notebooks,	prescribing	that	lifestyle,	and	the	claim	was	that
Pythagoras	had	written	it	himself,	though	in	truth	it	dated	from	little	earlier	than
the	cult.	Nonetheless,	Diogenes	Laertius	later	quoted	from	it	in	his	biography:

Virtue	is	harmony,	health,	universal	good,	and	god,	on	which
account	everything	owes	its	existence	and	preservation	to
harmony.	Friendship	is	harmonic	equality.	Honors	to	gods	and
heroes	should	not	be	equal;	gods	should	be	honored	at	all	times
with	pious	silence,	clothed	in	white	garments,	and	keeping	one’s
body	chaste;	but,	to	the	heroes,	such	honors	should	not	be	paid	till
after	noon.	A	state	of	purity	is	achieved	through	purifications,
washings,	ablutions	and	purifying	ones	self	from	all	deaths	and
births	and	any	kind	of	pollution;	by	abstaining	from	all	animals
that	have	died,	mullet,	blacktail	fish,	eggs	and	egg-laying	animals
and	from	beans	and	other	things	forbidden	by	those	who	have
charge	of	the	mysteries	in	the	sanctuaries.4

In	second-century-B.C.	Rome	and	Alexandria,	many	such	“pseudo-
Pythagorean”	books	and	writings	appeared.	The	semi-historical	tradition
regarding	Pythagoras,	fragmentary	and	confusing	as	it	was	already,	would	be
tainted	irretrievably	by	this	large	body	of	fiction	pretending	to	be	fact.

Cato	the	Elder,	who	brought	Ennius	to	Rome	and	sponsored	his	introduction
to	Roman	society,	read	a	book	called	Pythagoras	on	the	Power	of	Plants,	a	work



in	the	genre	of	natural	and	supernatural	botany	in	which	he	found	information
about	a	species	of	cabbages,	Brassica	pythagorea.	Cato	included	them	in	his
own	book	De	Agricultura,	a	compendium	of	practical	advice	for	owners	of	mid-
sized	agricultural	estates,	featuring	recipes,	prescriptions,	religious	formulae,	and
high	praise	for	cabbages,	especially	the	Pythagorean	variety,	leaving	little	need
to	grieve	for	beans.	Pliny	the	Elder,	in	the	next	century,	like	Cato	a	man	of
impressive	learning	and	intelligence,	nevertheless	also	failed	to	discern	that
Pythagoras	on	the	Power	of	Plants	was	a	forgery	and	alluded	to	it	in	his
Naturalis	Historia,	a	thirty-seven-volume	encyclopedia	of	every	bit	of
information	available	to	him	about	animals,	vegetables,	minerals,	and	humans.*
“Nature,	which	is	to	say	Life,	is	my	subject,”	he	had	declared.5

Some	authors	were	meanwhile	more	focused	on	attempting	to	convey
authentic	Pythagorean	doctrine.	When	Cicero	was	in	Rhodes	for	part	of	his
education,	he	sat	at	the	feet	of	the	Stoic	philosopher	Posidonius,	who	lived	from
about	135	to	51	B.C.	Many	young	enthusiasts	were	seeking	out	Posidonius	as	a
teacher	and	role	model.	Born	in	Syria,	he	had	traveled	widely,	and	daringly,	to
Spain,	Africa,	Italy,	Sicily,	and	what	is	today	France,	into	regions	that	were	still
frontiers,	and	his	accomplishments	and	physique	had	earned	him	the	nickname
Posidonius	the	Athlete.	Students	and	contemporaries	respected	him	as	one	of	the
most	stimulating	and	learned	men	of	their	time.

Only	fragments	survive	of	more	than	twenty	books	by	Posidonius.	He
apparently	discussed	what	he	believed	were	Pythagorean	ideals	of	good
government	in	a	history	of	the	Roman	Republic,	arguing	that	Rome’s	decline	in
public	and	political	morality	was	linked	to	her	final	defeat	of	the	Carthaginians
in	146	B.C.	With	no	enemy	on	the	horizon,	Rome	had	degenerated	into	a	morally
weak	city,	rank	with	unrestrained	behavior	and	torn	by	internal	political	violence
and	competition	for	power	and	wealth.6	Posidonius	treasured	Plato’s	Timaeus
and	attributed	part	of	his	own	philosophy	to	the	Pythagoreans.	According	to	one
of	the	Posidonius	fragments:	“Not	only	Aristotle	and	Plato	held	this	view	about
emotion	and	reason	but	others	even	earlier,	including	Pythagoras,	as	Posidonius
says,	who	claims	that	the	view	was	originally	that	of	Pythagoras	but	Plato
developed	it	and	made	it	more	perfect.”

Much	that	is	known	about	Posidonius	comes	through	the	Skeptic
philosopher	and	historian	Sextus	Empiricus,	who	lived	at	the	turn	of	the	second
to	third	centuries	A.D.	He	apparently	took	his	information	from	Posidonius	when
he	explained	why	the	Pythagoreans	thought	that	if	you	claim	something	is	true,
mathematical	logic	is	the	only	standard	by	which	your	claim	can	be	judged.
“Number”	was	the	principle	underlying	the	structure	of	the	universe:	“And	this



is	what	the	Pythagoreans	mean	when,	in	the	first	place,	they	are	in	the	habit	of
saying	‘all	things	resemble	numbers,’	and,	in	the	second	place,	they	swear	this
most	naturalistic	oath.”	The	oath	was	the	tetractus	oath.7	Sextus	went	on	in
familiar	fashion	to	point	out	how	the	tetractus	embodied	the	numbers	1,	2,	3,	and
4	that	were	also	in	the	musical	ratios.	He	listed	the	four	steps,	point–line–surface
(tetractus)–solid	(pyramid)—“the	first	form	of	a	solid	body.”	So	“both	body	and
what	is	incorporeal	are	conceptualized	according	to	the	ratios	of	these	four
numbers.”	To	reinforce	this	idea,	Sextus	Empiricus	gave	numerous	examples	of
the	ways	the	numbers	and	ratios	play	out	in	bodily	substances,	in	incorporeal
things	like	time,	in	everyday	life,	and	in	the	arts	and	architecture.

Sextus	Empiricus,	living	at	the	turn	of	the	second	to	third	centuries	A.D.,	got
all	this	information	from	an	earlier	source,	but	why	have	scholars	concluded	it
was	Posidonius?	The	clue	lies	in	a	sad	story	set	in	Posidonius’	adopted	home,
the	island	of	Rhodes.	The	sculptor	Chares	of	Lindos	was	engaged	to	construct	an
enormous	bronze	statue,	the	Colossus	at	Rhodes.	He	submitted	his	estimate	of
the	cost.	Then	the	citizens	decided	they	wanted	a	statue	twice	as	large.	How
much	would	that	add	to	the	cost?	Chares	merely	doubled	his	original	estimate—
a	fatal	error.	“Twice	as	large,”	he	remembered	too	late,	did	not	only	mean	twice
as	tall.	He	had	to	increase	all	the	dimensions.	Chares	realized	his	mistake	when
all	the	money	was	used	up	on	the	first	phase	of	the	work,	and	he	committed
suicide.	Sextus	included	this	story	in	a	discussion	of	numbers	and	ratios,	and
scholars	see	it	as	Posidonius’	fingerprint	on	Sextus’	explanation	of	Pythagorean
theory.	The	information	Sextus	preserved	was	probably	what	Cicero	learned
about	Pythagoras	when	he	studied	with	Posidonius.

By	the	mid-first	century	B.C.,	a	cultlike	group	flourished	in	Rome	under	the
leadership	of	Nigidius	Figulus,	a	“Pythagorean	and	magus”	in	whose
Pythagoreanism	the	line	between	science	and	magic	grew	fuzzy	to	the	point	of
extinction.	Pythagoreanism	“for	Nigidius	and	his	friends	meant	primarily	a
belief	in	magic,”	wrote	the	historian	Elizabeth	Rawson.8	Nigidius’	reputation	for
having	second	sight	and	occult	powers	qualified	him	to	work	up	a	birth
horoscope	of	the	later-to-be-emperor	Augustus,	which	correctly	foretold	a
brilliant	future.	Romans	of	that	era	did	not	consider	such	a	scholar	out	of	the
mainstream	or	on	the	lunatic	fringe.	Cicero	wrote	in	the	introduction	to	his	own
translation	of	Plato’s	Timaeus	that	Nigidius	“arose	to	revive	the	teachings	of	the
Pythagoreans	which,	after	having	flourished	for	several	centuries	in	Italy	and
Sicily,	had	in	some	way	been	extinguished,”	and	that	he	was	“a	particularly
acute	investigator	of	those	matters	which	nature	has	made	obscure.”9	Nigidius
was	an	educated,	prolific	author	of	books	on	the	planets,	the	zodiac,	grammar,



natural	philosophy,	dreams,	and	theology,	with	an	extensive	knowledge	of
religions	and	cults	from	much	of	the	known	world.

Romans	often	invoked	Pythagoras’	name	to	represent	wisdom	and	integrity.
The	scholar	and	satirist	Marcus	Terentius	Varro,	considered	by	many	the	most
learned	Roman	of	the	first	century	B.C.,	began	his	book	Hebdomades	with
Pythagorean-sounding	praise	of	the	number	7	and	a	quotation	about	astronomy
from	Nigidius.	When	Varro	died	he	was	buried,	according	to	Pliny,	in	the
“Pythagorean	mode,”	in	a	clay	coffin	with	myrtle,	olive,	and	black	poplar
leaves.10	Cicero,	for	his	part,	attempted	to	undermine	the	credibility	of	one
“Vatinius,”	a	supporter	of	Julius	Caesar,	by	righteously	accusing	him	of	impiety:
for	he	“calls	himself	a	Pythagorean	and,	with	the	name	of	that	most	thoroughly
learned	man,	tries	to	shield	his	monstrous,	barbarous	behavior.”11	Cicero	seems
never	to	have	joined	a	Pythagorean	cult,	but	he	made	a	pilgrimage	to
Metapontum	to	visit	the	house	where	tradition	said	Pythagoras	died.

Pythagoras	made	appearances	in	many	of	Cicero’s	works.	In	a	scene	from
On	the	Commonwealth,	set	at	Scipio	Africanus’	country	estate,	Africanus	and
his	nephew	Quintus	Tubero,	the	first	of	several	expected	visitors	to	arrive,
recline	on	couches	in	the	Roman	fashion,	awaiting	another	guest,	Panaetius,	who
investigates	problems	of	astronomy	“with	the	greatest	enthusiasm.”12	In
anticipation	of	his	arrival,	Scipio	mentions	a	matter	that	has	come	up	in	the
Senate	about	a	“second	sun,”*	then	remarks,

SCIPIO	AFRICANUS:	I	always	feel	that	Socrates	was	wiser,	since	he
resigned	all	interests	of	this	sort	and	declared	that	problems	of
natural	philosophy	either	transcended	human	reason	or	in	no	way
concerned	human	life.

TUBERO:	I	cannot	understand,	Africanus,	how	the	tradition	became
established	that	Socrates	rejected	all	such	discussions	and
investigated	only	the	problems	of	human	life	and	conduct.	Indeed,
what	more	trustworthy	authority	can	we	cite	than	Plato?	And	Plato,
in	many	passages	of	his	works,	even	where	he	represents	Socrates
as	discoursing	about	ethics	and	politics,	makes	him	eager	to
introduce	arithmetic,	geometry,	and	harmony,	after	the	manner	of
Pythagoras.

SCIPIO:	What	you	say	is	true,	but	I	presume	you	have	heard,	Tubero,	that
after	the	death	of	Socrates,	Plato	went	first	to	Egypt	to	continue	his
studies,	and	later	to	Italy	and	Sicily	that	he	might	thoroughly



master	the	discoveries	of	Pythagoras.	He	was	very	intimate	with
Archytas	of	Tarentum	and	Timaeus	of	Locri	and	acquired	the
papers	of	Philolaus.[*]	Since	at	that	time	the	name	of	Pythagoras
was	greatly	honored	in	those	places,	Plato	devoted	himself	to	the
Pythagoreans	and	their	researches.	Thus,	as	he	had	been	devotedly
attached	to	Socrates	and	had	wished	to	attribute	everything	to	him,
he	interwove	the	charm	and	argumentative	skill	of	Socrates	with
the	mysticism	of	Pythagoras	and	the	well-known	profundity	of	his
varied	lore.

Tubero	thinks	of	Pythagoras	in	connection	with	arithmetic,	geometry,	and
harmony.	Scipio	associates	him	with	mysticism	and	profound,	“varied	lore.”
Later	in	the	same	conversation,	they	invoke	his	authority	on	the	natural
foundation	of	laws	protecting	life:

Pythagoras	and	Empedocles,	men	of	no	ordinary	attainments	but
scholars	of	the	first	rank,	assert	that	there	is	a	single	legal	status
belonging	to	all	living	creatures.	They	proclaim	moreover,	that
everlasting	punishment	awaits	those	who	have	wronged	anything
that	lives.13

Cicero	even	weighed	in	on	the	bean	issue:	Pythagoreans	avoided	them	because
they	cause	“considerable	flatulence	and	thus	are	inimical	to	those	who	seek
peace	of	mind.”14

It	was	in	Cicero’s	“Dream	of	Scipio”	that	he	sounded	most	Pythagorean—
and	also	much	like	Plato.	The	“Dream”	concluded	Cicero’s	De	republica,	and	in
a	graceful	parallel,	he	modeled	it	on	the	“Myth	of	Er”	that	ended	Plato’s
Republic.	Cicero’s	“Dream”	takes	him	to	a	region	accessible	only	to	those	who
through	music,	learning,	genius,	and	devotion	to	divine	studies	have	achieved
permanent	reunion	with	the	highest	level	of	existence.	His	ears	are	filled	with	a
sound	“strong	and	sweet,”	and	he	asks	Scipio	what	it	is.	Scipio	replies,

That	is	a	sound	which,	sundered	by	unequal	intervals,	that
nevertheless	are	exactly	marked	off	in	due	proportion,	is
produced	by	the	movement	and	impulse	of	the	orbs	themselves,
and,	commingling	high	and	low	tones,	causes	varying	harmonies
in	uniform	degree;	for	such	swift	motions	cannot	be	produced	in
silence,	and	nature	ordains	that	the	extremities	sound	low	at	one



end,	high	at	the	other.	Hence	the	course	of	the	starry	heaven	at	its
highest,	where	the	motion	is	exceedingly	rapid,	moves	with	a
sharp,	quick	sound;	while	the	moon	in	its	course	(which	is	the
lowest	of	all)	moves	with	a	heavy	sound;	for	earth,	the	ninth	of
these	bodies,	biding	immovable	in	one	place,	ever	holds	fast	in
the	center	of	the	universe.15

Because	Venus	and	Mercury	“are	in	unison,”	there	are	only	seven	sounds—
matching	the	number	of	strings	on	the	seven-stringed	lyre—“seven	distinct
tones,	with	measured	intervals	between.”	By	imitating	this	harmony	with	strings
and	voices,	“skilled	men	have	opened	for	themselves	a	way	back	to	this	place,	as
have	others	who	with	outstanding	genius	have	all	their	lives	devoted	themselves
to	divine	studies.”16	Cicero’s	metaphor	to	explain	why	most	humans	never	hear
the	celestial	music	was	that	their	ears	are	deafened	to	the	sound,	just	as	“where
the	Nile	at	the	Falls	of	Catadupa	pours	down	from	lofty	mountains,	the	people
who	live	hard	by	lack	the	sense	of	hearing	because	of	the	cataract’s	roar.”17	He
gave	no	indication	that	he	knew	Pythagoreans	had	thought	the	Earth	was	not	the
center	of	the	cosmos.	In	fact,	nowhere	in	the	surviving	ancient	literature	is	there
a	hint	of	anyone	bringing	the	concept	of	an	audible	“music	of	the	spheres”
together	with	the	cosmology	that	included	the	central	fire	and	the	counter-earth,
even	though	the	musical	ratios	had	probably	played	a	role	in	the	development	of
the	Pythagorean	ten-body	model	of	the	cosmos.

In	a	different	realm	of	scholarship,	one	extremely	successful	younger
Roman	contemporary	of	Cicero,	the	architect	Marcus	Vitruvius	Pollio,	authored
an	overview	of	architecture	of	his	era,	De	architectura	or	Ten	Books	on
Architecture.	He	recommended	Pythagorean	ratios	and	extrapolations	on	them
for	the	dimensions	of	rooms,	not	using	any	shapes	for	temples	other	than	one
whose	length	was	twice	its	width	(ratio	2:1),	or	circular.	Greek	forums	were
square,	but	Vitruvius’	had	a	width	2/3	its	length,	because	an	audience	for
gladiatorial	combat	was	better	accommodated	in	that	space.	For	houses,	“the
length	and	breadth	of	courts	[atria]	are	regulated	in	three	ways,”	two	of	which
employed	Pythagorean	ratios:	“The	second,	when	it	is	divided	into	three	parts,
two	are	given	to	the	width.”	The	third:	“A	square	being	described	whose	side	is
equal	to	the	width,	a	diagonal	line	is	drawn	therein,	the	length	of	which	is	to	be
equal	to	the	length	of	the	atrium.”18	This	design	was	based	on	Socrates’	lesson	in
Plato’s	Meno.	“By	numbers	this	cannot	be	done,”	wrote	Vitruvius.	Socrates	had
used	no	numbers.	The	length	of	that	diagonal	was	incommensurable;	so	was	the
length	of	one	side	of	Vitruvius’	room.	He	frequently	mentioned	Pythagoras	and



the	Pythagoreans.	The	Pythagorean	theorem	was	a	shortcut	in	designing
staircases,	and	he	unhesitatingly	attributed	it	to	Pythagoras.

Vitruvius’	books	had	illustrations,	but	copies	that	reached	the
Renaissance	did	not.	The	drawing	below,	by	Cesare	Cesariano,	is	a
Renaissance	(1521)	realization	of	Vitruvius,	who	was	not	easy	to
interpret.	According	to	the	architect	Leon	Battista	Alberti,	“Greeks
thought	he	was	writing	in	Latin;	Latins	thought	he	was	writing	in
Greek.”	Nevertheless,	this	drawing	probably	faithfully	represents	his
instructions:

This	proposition	is	serviceable	on	many	occasions,	particularly	in
measuring	[and]	setting	out	the	staircases	of	buildings	so	that	each
step	has	its	proper	height.	If	the	height	from	the	pavement	to	the
floor	be	divided	into	three	parts,	five	of	them	will	be	the	exact	length
of	the	inclined	line	which	regulates	the	blocks	of	which	the	steps	are
formed.	Four	parts,	each	equal	to	one	of	the	three	into	which	the
height	from	the	pavement	to	the	floor	was	divided,	are	set	off	from
the	perpendicular	for	the	position	of	the	first	or	lower	step.	Thus	the
arrangement	and	ease	of	the	flight	of	stairs	will	be	obtained,	as	the
figure	shows.19



Drawing	by	Cesare	Cesariano	that	represents	a	Renaissance
realization	of	Vitruvius’	works

Vitruvius’	book	referred	to	an	unusual	application	of	musical	fourths,	fifths,
and	octaves	used	in	an	amplification	system	in	Greek	theaters.	A	Roman	theater,
he	pointed	out,	being	made	of	wood,	had	good	acoustics,	but	in	a	Greek	theater,
made	of	stone,	the	voices	of	the	actors	needed	amplification:

So	[the	Greeks	placed	vessels]	in	certain	recesses	under	the	seats
of	theatres,	fixed	and	arranged	with	a	due	regard	to	the	laws	of
harmony	and	physics,	their	tones	being	fourths,	fifths,	and
octaves;	so	that	when	the	voice	of	the	actor	is	in	unison	with	the
pitch	of	these	instruments,	its	power	is	increased	and	mellowed
by	impinging	thereon.20

This	was	by	way	of	demonstrating	that	an	architect	must	be	the	master	of	many
subjects—not	so	difficult	as	it	might	seem,	thought	Vitruvius,	for	a	very
Pythagorean	reason:

For	the	whole	circle	of	learning	consists	in	one	harmonious
system.	.	.	.	The	astronomer	and	musician	delight	in	similar
proportions,	for	the	positions	of	the	stars	answer	to	a	fourth	and
fifth	in	harmony.	The	same	analogy	holds	in	other	branches	of
Greek	geometry	which	the	Greeks	call	 	indeed,
throughout	the	whole	range	of	art,	there	are	many	incidents



common	to	all.

Music,	wrote	Vitruvius,	assists	an	architect	“in	the	use	of	harmonic	and
mathematical	proportion.	He	would,	moreover,	be	at	a	loss	in	constructing
hydraulic	and	other	engines,	if	ignorant	of	music.”21

MEANWHILE,	THE	INSIDIOUS	trickle	of	pseudo-Pythagorean	works	that	had	begun
in	the	third	century	B.C.	had	become	a	veritable	industry	by	the	first,	with
publishers	and	authors	trying	to	meet	a	continuing	demand	for	books	supposedly
written	by	Pythagoras	or	his	earliest	followers,	or	by	Philolaus	or	Archytas.
Rome	and	Alexandria	were	the	places	to	buy,	sell,	and	collect	these	scrolls,	but
those	who	snapped	them	up	were	not	only	Roman	and	Alexandrian	readers.
King	Juba	II	of	Numidia,	who	came	to	Rome	for	his	schooling,	was	one	of	the
most	avid	collectors.22	The	pseudo-Pythagorean	books	are	no	help	in
discovering	the	real	Pythagoras,	and	would	represent	unfortunate	pitfalls	for
Pythagoras’	biographers,	but	they	are	time	capsules	of	what	scholars	and	the
public	in	the	third	through	first	centuries,	and	well	beyond,	thought	Pythagoras
had	taught	and	who	he	had	been.

The	Pythagorean	Notebooks	were	relatively	early,	from	the	period	when
Alexandria	was	the	center	of	Hellenistic	culture	and	Greco-Roman	culture	was
still	largely	a	thing	of	the	future,	and	they	did	not	survive	long	even	in	complete
copies.	Their	originals	are	almost	as	lost	in	the	past	as	their	supposed	author.	No
one	knows	who	wrote	them,	but	it	was	not	Pythagoras,	for	the	author	clearly	had
read	the	Timaeus	and	was	familiar	with	Plato’s	unwritten	doctrines.	In	an
excerpt	preserved	by	Diogenes	Laertius,	one	of	the	first	sentences	mentioned	the
Indefinite	Dyad.*	Traces	of	pre-Platonic	material	received	an	unintentional
Platonic	update,	while	passages	that	depended	on	later	knowledge	appear	to	have
been	intentionally	reworked	with	an	early-Pythagorean	twist.	Regarding	the
gestation	period	of	a	human	embryo:	“According	to	the	principles	of	harmony,	it
is	not	perfect	till	seven,	or	perhaps	nine,	or	at	most	ten	months.”	The	“harmony”
sounded	Pythagorean,	and	“ten	months”	like	a	Pythagorean	stretch	of	nature,	but
other	passages	having	to	do	with	medical	matters	seem	to	have	mimicked
Hippocrates,	for	whom	there	was	also	a	large	body	of	“pseudo”	literature.	A
discussion	of	the	significance	of	opposites	in	the	cosmos	rapidly	segued	into
Aristotle,	made	to	sound	more	“primitive.”	Aristotle	had	written	that	the	region
below	the	orbit	of	the	Moon	is	impure	and	changeable,	but	beyond	it,	all	is	pure
and	unchanging,	while	the	Notebooks	told	of	the	“mortal”	area	near	the	earth
being	stale	and	“pregnant	with	disease,”	and	the	“upper	air”	“immortal	and	on



that	account	divine.”	†	Modern	scholarship	dates	the	Notebooks	to	the	second	or
third	centuries	B.C.,	not	earlier,	and	certainly	not	to	the	sixth	century.

Another	best-selling	pseudo-Pythagorean	work	was	Lysis’	Letter	to
Hipparchus,	supposedly	authored	by	the	Lysis	who	moved	to	Thebes	after	the
dispersal	of	the	Pythagoreans	in	Magna	Graecia.	Lysis	was	a	real	person,	teacher
of	the	general	Epaminondas,	but	he	did	not	write	this	letter.	In	it,	“Lysis”
accuses	Hipparchus,	another	Pythagorean,	of	“philosophizing	in	public,	which
Pythagoras	deemed	unworthy.”	To	prove	that	Pythagoras	frowned	on	such	lack
of	discretion,	the	letter	writer	tells	of	Damo,	“daughter	of	Pythagoras.”	Diogenes
Laertius	quoted:

When	he	had	entrusted	his	commentaries	to	his	daughter	Damo,
he	charged	her	not	to	divulge	them	to	anyone	outside	of	the
house.	Though	she	might	have	sold	his	discourses	for	much
money,	she	did	not	abandon	them;	for	she	thought	that	obedience
to	her	father’s	injunctions,	even	though	this	entailed	poverty,	was
better	than	gold,	and	for	all	that	she	was	a	woman.23

Linguistic	analysts	place	the	Letter	in	the	first	century	B.C.,	but	some	scholars
prefer	to	think	it	was	written	at	the	time	of	the	appearance	of	the	Pythagorean
Notebooks	in	order	to	support	their	authenticity.24	The	claim	would	have	been
that	the	Notebooks	were	the	very	discourses	that	Damo	had	refused	to	sell,	just
recently	rediscovered.	If	the	Letter	was	a	concoction	to	support	the	Notebooks,
then	it	was	written	earlier	than	100	B.C.	and	probably	earlier	than	200	B.C.	But	no
scholar	today	believes	that	Lysis’	Letter	to	Hipparchus	was	written	in	the	fifth
century	B.C.	by	the	historical	Lysis.

The	fate	of	another	book,	On	the	Nature	of	the	Universe	by	Occelus	of
Lucania,	is	an	example	of	the	confusion	that	occurred	even	when	scholars	were
well-intentioned.	Although	Occelus	probably	lived	in	the	second	century	B.C.,	in
the	early	half	of	the	first	century	A.D.	his	book	was	mistakenly	regarded	as	an
authentic	early	Pythagorean	text.	Occelus	and	his	family	considered	themselves
to	be	Pythagoreans,	but	the	innocent	Occelus	had	apparently	been	writing	for
himself,	not	trying	to	pass	his	book	off	as	something	written	earlier.25	However,
no	less	a	scholar	than	Philo	of	Alexandria,	the	first-century	Grecian-Jewish
philosopher,	was	fooled.	Occelus	had	insisted	that	the	cosmic	order	was	eternal;
there	was	no	need	for	a	doctrine	of	creation.	Philo,	unaware	that	Occelus	lived
after	Aristotle,	treated	his	book	as	evidence	that	early	Pythagoreans,	not
Aristotle,	were	the	first	to	introduce	the	idea	that	the	world	is	eternal.26



By	the	first	century	B.C.,	it	had	become	widely	accepted	that	Pythagoras
himself	had	left	no	writing,	though	Diogenes	Laertius	would	later	claim
otherwise.	Works	like	the	Notebooks	and	a	three-part	book	supposedly	by
Pythagoras	(actually	from	the	late	third	century	B.C.)	on	education,	politics,	and
physics	were	no	longer	generally	credited,	but	that	did	not	end	the	forgeries.	It
became	fashionable	to	“discover”	writings	by	Pythagoreans	like	Lysis,	the
fictional	Timaeus,	Archytas,	and	the	women	Theano	and	“Phyntis,	Daughter	of
Callicrates.”	Some	offered	advice	and	maxims	for	daily	living.	Others	claimed	to
be	authentic	Pythagorean	scientific	and	philosophical	treatises.	Many	give
themselves	away	today	by	showing	heavy	influence	from	Plato	and	his	pupils,
from	Aristotle,	and	from	the	Stoics,	or	because	their	authors	made	inept	attempts
to	imitate	the	Doric	dialect	spoken	by	the	Greeks	in	Magna	Graecia	in
Pythagoras’	time.27	Even	when	it	was	not	in	“Doric,”	the	writing	often	had	a
flowery,	pseudo-poetic	flavor.	(Think	of	modern	attempts	to	sound	like	“merrye
olde	England”	and	the	only	slightly	more	sophisticated	efforts	of	Victorian
authors	to	reproduce	medieval	speech.)	Other	Pythagorean	forgeries	betray
themselves	simply	by	their	banality;	had	these	been	the	works	of	Pythagoras	and
his	followers,	the	Pythagoreans	would	hardly	have	been	worth	remembering.*

According	to	one	count,	at	the	height	of	the	era	of	Pythagorean	forgeries,
there	were	eighty	works	“by	Pythagoras”	in	circulation	and	two	hundred
purporting	to	be	by	his	early	followers.28	How	could	so	many	readers	have	been
fooled?	Not	all	were.	Callimachus,	in	the	mid-third	century	B.C.,	declared	that	a
poem	Pythagoras	was	supposed	to	have	written	was	not	authentic.	He	worked	at
the	Library	of	Alexandria,	and	if	anyone	could	spot	a	forgery,	he	could.	Most
readers	cannot,	however,	be	seriously	blamed	for	failing	to	recognize	that	the
pseudo-Pythagorean	books	were	not	genuine.	The	words	from	the	fragment	of
Posidonius,	to	the	effect	that	a	certain	view	“was	originally	that	of	Pythagoras
but	Plato	developed	it	and	made	it	more	perfect,”	reflected	the	assumption	that
Pythagorean	and	Platonic	doctrines	were	virtually	one	and	the	same—that
Plato’s	philosophy	derived	from	Pythagoras.	For	readers	who	believed	that,	and
especially	for	those	who	were	not	aware	of	how	different	the	philosophies	of
Plato	and	Aristotle	were	from	each	other,	it	was	an	easy	step	to	believe	that
Aristotle	also	got	his	ideas	from	Pythagoras.	So	when	Platonic	and	Aristotelian
ideas	showed	up	in	works	claiming	to	come	from	before	the	lifetimes	of	these
two	philosophers,	why	wonder?	Was	it	not	from	these	very	documents	that	Plato
and	Aristotle	had	learned?

Pseudo-Pythagorean	literature	continued	to	appear	for	several	centuries	and
was	immensely	popular.	You	could	pick	up	a	knowledge	of	“Pythagorean



doctrine,”	unaware	or	ignoring	that	it	combined	some	genuinely	old	material
with	simplified	or	summarized	Plato	and	Aristotle,	mixed	with	a	good	dose	of
Stoicism,	and	(in	the	later	books)	given	a	neo-Platonic	overcast.	You	could
memorize	the	maxims	of	the	Golden	Verses	of	Pythagoras,	or	require	your
children	to	do	so.	As	was	true	of	The	Prophet	by	Khalil	Gibran	in	the	twentieth
century,	you	might	not	notice,	or	might	not	care,	that	what	came	in	the	format	of
authentic	ancient	wisdom	was	mostly	a	contemporary	poetic	invention	and
interpretation.	The	maxims	were	wise	and	some	of	them	beautiful.	You	could
find	out	what	“Pythagoras”	had	recommended	regarding	the	medicinal	and
magical	powers	of	plants.	If	it	caused	you	to	feel	better,	this,	rather	than	any
scholarly	debate,	proved	the	efficacy	and	authenticity	of	the	book.	You	could
learn	what	“Archytas”	had	contributed	to	knowledge	about	architecture,
agriculture,	flutes,	ethics,	mechanics,	wisdom,	prosperity,	adversity,	and
“intermediary	comfort”—never	mind	that	he	had	actually	had	little	or	nothing	to
say	about	some	of	these	subjects.	Roman	and	Hellenistic	readers	could	devour
these	works,	share	them,	discuss	them,	make	gifts	of	them,	have	them	read
beautifully	at	weddings	and	funerals,	find	themselves	uplifted	and	improved	by
their	high-minded	ideas	and	sometimes	enlightened	by	information	that	was
helpful	or	challenging	no	matter	where	it	came	from.	Romans	could	feel	that
they	knew	something	about—and	had	derived	benefit	from—their	own,
magnificent,	nearly	homegrown	sage.

The	pseudo-Pythagorean	texts	outlasted	the	Roman	Empire.	On	the	World
and	the	Soul,	supposedly	by	“Timaeus	of	Locri,”	was	still	being	recopied	in	the
Middle	Ages	by	scholars	who	believed	this	was	the	early	Pythagorean	work
from	which	Plato	got	his	cosmology.	Copernicus	translated	Lysis’	Letter	to
Hipparchus.	One	begins	to	realize	the	enormous	research	difficulties,
distinguishing	Pythagorean	fact	from	fiction,	that	would	confront	Diogenes
Laertius,	Porphyry,	and	Iamblichus.



CHAPTER	12

Through	Neo-Pythagorean	and	Ptolemaic	Eyes
First	and	Second	Centuries	A.D.

FASCINATION	WITH	PYTHAGORAS	among	Roman	and	Alexandrian	philosophers
and	scholars	of	the	first	century	B.C.	led	to	a	movement	in	the	first	and	second
centuries	A.D.	called	middle-Platonic	or	neo-Pythagorean.	Books	and	fragments
from	men	powerfully	drawn	to	what	they	believed	were	Pythagorean
philosophical	and	mathematical	ideas	survive	from	this	period.	Some	of	these
writers	called	themselves	Pythagoreans.	All	regarded	Pythagoras	as	a	wellspring,
in	some	cases	as	the	unique	wellspring,	of	a	precious	intellectual	and
philosophical	heritage	that	had	reached	them	through	Plato.1	The	association	of
Pythagoras	with	magic	and	the	occult	also	continued.	Nigidius	Figulus’	first-
century-B.C.	version	of	Pythagoreanism	contributed	to	a	growing	popular	image
of	Pythagoras—and,	oddly,	Archytas—as	magicians.	Nigidius’	desire	to	bring
back	Pythagoreanism	as	a	way	of	life	and	an	ongoing	approach	to	the	world
would	attract	others	in	the	centuries	to	follow.

The	most	important	neo-Pythagorean	philosophers	were,	to	a	man,	not	from
Rome	but	from	other	parts	of	the	Empire—Alexandria,	predictably,	but	also
from	what	is	now	Turkey,	from	Syria,	and	even	from	the	Atlantic	coast	of	Spain.
The	cultlike	groups	flourished	in	Rome	itself.	Information	about	one	of	these
came	through	Lucius	Annaeus	Seneca,	an	eminent	Roman	statesman	and	orator
of	the	first	century	A.D.	Seneca	was	a	pupil	of	Sotion,	who	belonged	to	a
philosophical	movement	known	as	the	Sextians.	The	founders,	Quintus	Sextius
and	his	son,	were	men	of	strong	moral	fiber	whose	ideal	was	moral	perfection.
Theirs	was	a	staunch,	Roman	approach	in	which	the	important	thing	about	a
philosophy	was	how	it	affected	a	man’s	everyday	behavior	and	practical	life.
Sextians	were	hard	to	distinguish	from	Stoics,	but	two	of	their	practices	were
definitely	considered	to	be	“Pythagorean”:	they	did	not	eat	the	flesh	of	animals
and	they	performed	a	self-evaluation	at	the	end	of	each	day,	to	take	stock	of
personal	moral	improvement	or	decline.	While	no	trace	of	that	practice	can	be
found	in	early	Pythagorean	communities,	it	had	begun	to	be	associated	with
“Pythagoreans”	in	the	first	century	B.C.,	and	Cicero	called	it	a	“Pythagorean
custom.”	Seneca	described	it,	as	he	had	learned	it	from	Sotion:	A	Sextian	asked



himself,	“What	bad	habit	have	I	cured	today?”	“What	temptation	have	I
resisted?”	“In	what	ways	am	I	a	better	man?”	Similar	questions	had	appeared	in
the	pseudo-Pythagorean	booklet	called	the	Pythagorean	Golden	Verses:

Never	let	slumber	approach	thy	wearied	eyelids
Ere	thrice	you	review	what	this	day	you	did:
Wherein	have	I	sinned?	What	did	I?	What	duty	is	neglected?
All,	from	the	first	to	the	last,	review;	and	if	you	have	erred,	grieve	in

your	spirit,	rejoicing	for	all	that	was	good.2

Sotion	had	also	urged	Seneca	to	adhere	to	a	vegetarian	diet,	for	“souls	and
animals	return	in	regular	cycles.	Great	men	have	believed	this	is	so.	If	these
things	are	true,	you	avoid	guilt	by	abstaining	from	meat;	if	false,	you	gain	in
self-control.”3	Seneca’s	father,	who	abhorred	philosophy,	frowned	on	all	this,
but	Seneca	ignored	him	and	avoided	meat	for	more	than	a	year,	until	under	the
reign	of	Tiberius	it	became	dangerous	to	practice	what	might	be	interpreted	as	a
foreign	cult.

Another	cultlike	movement	in	the	mid	to	late	first	century	A.D.	was	led	by
the	colorful,	eccentric	Apollonius	of	Tyana.	Claiming	to	be	the	reincarnated
Pythagoras,	he	traveled	the	Mediterranean	world	as	an	itinerant	pagan
missionary	and	miracle	worker	during	the	reigns	of	Nero	and	Vespasian.	In	a
Cilician	temple,	not	far	from	his	birthplace	in	the	Cappadocian	region	of	what	is
now	Turkey,	Apollonius	established	his	own	“Academy”	and	“Lyceum,”	“until
every	type	of	philosophy	echoed	in	it.”4	He	wrote	a	biography	of	Pythagoras,
which	some	have	quipped	must	have	been	an	autobiography,	but	no	one	could
rival	his	knowledge	of	Pythagorean	legends	and	lore	from	earlier	centuries.

More	than	a	hundred	years	after	Apollonius	died	in	97	A.D.,	the	Roman
empress	Julia	Domna	discovered	him,	probably	through	a	book	that	she	found	in
the	imperial	library.	This	powerful	second	wife	of	the	emperor	Septimus	Severus
surrounded	herself	with	philosophers	and	intellectuals;	at	her	request,	one	of
them,	Philostratus,	agreed	to	write	Apollonius’	biography.	Julia	Domna	may
have	been	hoping	to	undermine	the	influence	of	Christianity	in	the	Empire	by
setting	up	Apollonius	as	a	competitor	to	Jesus.	Others	would	put	his	story	to	that
use.

In	Philostratus’	book	Life	of	Apollonius	of	Tyana,	he	had	Apollonius
retracing	Pythagoras’	journeys	in	search	of	wisdom.5	In	India—not	Egypt	or
Mesopotamia—Apollonius	discovers	the	source	of	Pythagorean	doctrine,



including	reincarnation	with	memory	of	past	lives.	In	other	chapters,	he	is	in
touch	with	sacred	wisdom	closer	to	home,	wrapping	himself	in	his	philosopher’s
cloak	and	entering	a	cave	shrine	in	central	Greece,	announcing	“I	wish	to
descend	on	behalf	of	philosophy,”	and	emerging	after	seven	days,	not	there,	but
at	Aulis,	clutching	a	book.	He	has	asked	the	oracle	what	is	the	most	complete
and	pure	philosophy	and	has	written	down	the	answer.	That	book,	wrote
Philostratus,	“contained	the	views	of	Pythagoras,	since	the	oracle	was	in
agreement	with	this	type	of	wisdom.”	From	the	time	of	the	emperor	Hadrian,	the
book	that	Apollonius	was	supposed	to	have	brought	out	of	the	cave	was	in	the
imperial	library.	Many	pilgrims	and	tourists	came	to	look	at	it	in	the	early	third
century,	around	the	time	of	Julia	Domna.

According	to	Philostratus’	biography,	Apollonius	preached	abstinence	from
meat,	wine,	and	sex	as	necessary	for	one	wishing	to	draw	closer	to	the	spiritual
world	and	see	the	future.	His	“Pythagorean”	doctrine	included	supernatural
wisdom,	universal	tolerance,	and	a	way	of	life	dedicated	to	purification	that
would	eventually	release	the	soul	from	the	prison	of	the	physical	body,	but	no
suggestion	of	witchcraft	or	magic—extraordinary	in	an	age	when	hardly	anyone
discounted	them.	Philostratus	emphasized	instead	that	Apollonius’	divine	nature
allowed	him	to	perform	supernatural	feats,	including	escaping	persecution	by
two	Roman	emperors	and	reviving	a	dead	girl.	Many	devotees	believed	what
they	read	and	erected	shrines	to	Apollonius.	The	emperor	Caracalla	built	a
temple	to	him	in	Tyana,	Apollonius’	birthplace.	Though	he	was	still	venerated	as
late	as	Byzantine	times,	Apollonius	did	not,	eventually,	have	the	staying	power
of	his	Christian	rival.

Popular	interest	in	Pythagoras	was	not	confined	to	the	Sextians	and
Apollonius.	In	the	second	century	A.D.,	the	oracles	at	Delphi,	and	at	Didyma	and
Claros	on	the	(now)	Turkish	coast	not	far	from	Samos,	adopted	a	distinctly
Pythagorean	turn	of	phrase.	The	holy	man	Alexander	of	Abonuteichos	mixed
quasi-medical	beliefs	with	his	Pythagoreanism.

On	a	more	elevated	intellectual	level,	though	“neo-Pythagoreanism”	was
never	a	unified	philosophy,	two	themes	bound	together	most	of	the	thinkers
grouped	under	that	banner:	the	old	assumption	that	Plato’s	philosophy	was
derived	from	Pythagoras,	and	a	growing	belief	that	there	was	one	supreme
transcendent	god.	That	trend	had	begun	in	the	second	half	of	the	first	century
B.C.,	when	Eudorus	of	Alexandria—considered	the	first	important	neo-
Pythagorean—broke	new	ground	with	his	own	Pythagorean	interpretation	of
Plato,	contending	that	in	Pythagorean	doctrine	the	One,	the	“supreme	god,”
transcended	the	opposites	limited-unlimited	and	one-plurality.	In	his	table	of



opposites,	One	was	centered	at	the	very	top,	not	belonging	to	either	column.
That	alteration	would	have	tremendous	importance	for	philosophy	and	religion.
With	Eudorus,	“Pythagoras”	began	to	be	a	code	word	for	a	way	of	thinking	in
which	the	One	transcended	all,	something	beginning	to	look	like	monotheism.
Eudorus’	interpretation	of	the	Pythagoreans	had	them	believing	the	invisible
supreme	god	and	source	of	harmony	was	within	reach	of	human	minds.	The
highest	human	aspiration	was	“becoming	like	god,	but	Plato	had	said	it	more
clearly	by	adding	‘as	far	as	possible.’	”6	Eudorus	was	laying	the	groundwork	for
many	who	would	follow	him.

The	Grecian-Jewish	philosopher	Philo	of	Alexandria	was	younger	than
Eudorus	by	about	two	generations.	The	Alexandrian	Jewish	community	to	which
his	family	belonged	was	as	old	as	the	city,	a	large,	thriving	population	that	had
worked	hard	for	more	than	three	centuries	to	stay	on	good	terms	with	their
Egyptian	and	Greek	neighbors.7	Under	Roman	rule,	their	situation	was	both
helped	and	hindered	by	the	fact	that	the	Romans	gave	them	special	privileges.
Roman-Jewish	relations	were,	nevertheless,	precarious.	Philo	served	on	an
Alexandrian/Jewish	delegation	to	Rome	that	floundered	when	the	emperor
Caligula,	who	thought	himself	a	god,	insisted	his	own	statue	be	erected	in	the
temple	in	Jerusalem.

Philo	was	a	devout	man	who	made	pilgrimages	to	Jerusalem,	where	the
great	temple	still	stood,	but	his	wealthy,	influential	parents	had	made	sure	he
received	a	thoroughly	Hellenistic-Greek	education.	He	was	both	a	devout	Jew
and	a	Platonist.

Like	Eudorus,	Philo	interpreted	Plato	as	having	taught	that	one	supreme	god
was	primary	to	everything	in	the	universe,	and	thought	Plato	got	these
transcendental	leanings	from	Pythagoras.	Philo	quoted	Philolaus:	“One	god,	who
is	forever,	is	prince	and	ruler	of	all	things,	stable,	unmoved,	himself	similar	to
himself,	different	from	others.”8	The	soul’s	journey	toward	God	was	the	ultimate
task	of	life,	and,	for	Philo,	the	Hebrew	Scriptures	exemplified	that	journey.	He
saw	the	lives	of	Moses	and	Abraham	as	the	pilgrimage	of	the	soul	toward	God.9
Adam	was	intellect;	Eve,	sensation;	Cain	and	Abel,	a	soul’s	being	torn	in
opposite	directions	of	evil	and	good.	Philo’s	Pythagorean	interpretation	of
Genesis	gave	special	attention	to	the	“fourth	day,”	when	God	completed	the
creation	of	the	heavens.	The	number	4	contained	the	musical	ratios	found	in	the
structure	of	the	heavens	and	represented	the	four	stages	in	the	creation	of	the
planets,	point–line–surface–solid.	The	musical	ratios	also	contained	the	number
3,	representing	the	three	dimensions	of	created	bodies—length,	breadth,	depth.
Numbers	were	the	ideas	and	the	tools	of	God	in	creation;	they	also	made	it



possible	for	humans	to	understand	the	heavens.
While	mulling	over	the	issue	of	whether	such	a	thing	as	“time”	existed

before	the	creation	of	the	universe,	Philo	got	caught	up	in	the	question	of
whether	the	Pythagoreans	or	Aristotle	had	been	the	first	to	suggest	that	the
universe	is	eternal,	and	mistakenly	cited	Occelus	of	Lucania’s	On	the	Nature	of
the	Universe	as	evidence	that	it	had	been	the	Pythagoreans.	Anticipating	the
concept	of	time	set	forth	by	the	Christian	philosopher	St.	Augustine	of	Hippo,
Philo	insisted	that	“there	was	no	time	before	the	world,	but	it	came	to	be	either
with	the	world	or	after	it.”10

Some	have	called	Philo	a	Greek	philosopher	who	remained	grounded	in	his
religion;	others,	a	Hebrew	mystic	who	used	the	tools	of	Greek	thought	in	the
service	of	religion.11	He	combined	the	practice	(in	both	Greek	and	Hebrew
traditions)	of	drawing	lessons	from	Homer	or	the	Hebrew	Scriptures	with	his
fine	understanding	of	Greek	philosophy	and	developed	a	philosophical
interpretation	of	the	Scriptures	that	he	hoped	would	win	respect	among	Greek
intellectuals.	But	his	impact	on	Greek	philosophers	was	not	as	great	as	he	hoped.
No	later	pagan	philosopher	appears	to	have	mentioned	him	directly.12	Rather,	it
was	the	early	Christian	writers	who	followed	his	lead	and	used	the	allegorical
method	as	he	did	for	reconciling	revealed	truth	with	intellectually	worked-out
truth.	Clement	of	Alexandria	and	Origen	were	admirers	(Clement	dubbed	him
Philo	the	Pythagorean)	and	generations	of	early	and	medieval	Christian	scholars
carefully	preserved	and	copied	his	work,	so	that	an	extraordinary	amount	of
what	Philo	wrote	survives	intact.*

The	Roman	poet	Ovid,	a	contemporary	of	Philo,	captured	in	his
Metamorphoses	the	more	popular	image	of	Pythagoras:	the	all-knowing	sage	of
legendary	antiquity	with	an	aura	of	universal,	unworldly	wisdom.	Ovid	revived
the	old	legend	about	the	Roman	king	Numa	and	had	Pythagoras	speak	through
him,	in	an	oration	that	stressed	the	doctrine	of	reincarnation	and	abstention	from
meat,	mostly	on	the	grounds	of	respect	and	sympathy	for	animals.	Ovid	was	not
attempting	to	philosophize	along	Pythagorean	lines	or	argue	Pythagorean
doctrine.	The	oration	was	part	of	a	larger	picture	he	painted	in	his	poem,	in
which	everything	is	changing,	shifting,	being	transformed,	nothing	endures,	and
“Nature,	the	great	inventor,	ceaselessly	contrives.”	Hence	the	title,
Metamorphoses.

Plutarch,	later	in	the	first	and	second	centuries	A.D.,	was	more	influential
than	Philo	or	Ovid	in	forming	the	image	of	Pythagoras	for	the	future.	His
Parallel	Lives	paired	biographies	of	celebrated	Greeks	and	Romans,	part	of	an
effort	to	find	ways	of	resolving	the	differences	between	the	Roman	culture	of



power	and	Greek	intellectual	culture.	How	much	to	trust	Plutarch	for	historical
and	biographical	details	has	been	a	frustrating	and	often	unanswerable	question,
but	that	has	not	prevented	his	Lives	from	being	the	text	on	which	readers	from
the	Renaissance	to	the	present	day	have	based	their	understanding	and	picture	of
the	ancient	world.	Plutarch	was	one	of	Shakespeare’s	favorite	authors.†
Copernicus	also	read	Plutarch,	and	he	quoted,	in	Greek,	from	Plutarch’s	Placita,
in	a	letter	to	Pope	Paul	III—a	passage	in	which	Plutarch	had	written	that
“Philolaus	the	Pythagorean”	claimed	the	Earth	moved	around	a	central	fire.	Like
Plato	and	Cicero,	Plutarch	wrote	an	elaborate	myth	about	the	fate	of	the	soul.13
For	his	last	thirty	years	he	was	a	priest	of	Apollo	at	Delphi,	and	he	came	up	with
a	Pythagorean	interpretation	of	the	god’s	name,	equating	him	with	the	One:	a
meant	“not,”	pollon	meant	“of	many.”	Hence	a-pollon	was	One.	Given
Plutarch’s	influence,	it	is	significant	that	he	linked	Pythagoras	with	the
Pythagorean	theorem.	It	is	largely	because	of	Plutarch	that	nearly	everyone
believes	Pythagoras	discovered	it.

Plutarch,	from	a	sixteenth-century	engraving

Of	all	who	thought	that	Plato	derived	his	ideas	from	Pythagoras,	no	other
was	so	convinced	and	outspoken	as	Moderatus	of	Gades,	known	as	the
“aggressive	Pythagorean.”	He	lived	in	the	second	half	of	the	first	century,	in
Gades	(later	Cádiz)	on	the	west	coast	of	Spain,	by	then	part	of	the	Empire.
Moderatus	could	be	called	the	Pythagorean	conspiracy	theorist,	for	he	insisted
that	not	only	Plato	but	also	Aristotle,	Speusippus,	Aristoxenus,	and	Xenocrates
were	plagiarists	who	had	“taken	for	themselves	the	fairest	fruit	of	Pythagorean



thought”	and	designated	as	“Pythagorean”	only	the	most	superficial	and	trivial
aspects	of	the	school,	so	as	to	make	a	mockery	of	Pythagoras	and	the
Pythagoreans.14	The	aphorisms	were	among	those	“superficial	and	trivial
aspects,”	and	Aristotle’s	listing	of	them	was,	to	Moderatus,	a	malicious	act.	He
scorned	the	acusmatici,	and	his	answer	to	the	argument	that	Aristoxenus	also
had	scorned	them	was	that	Aristoxenus’	attitude	was	a	particularly	subtle	part	of
the	propaganda	project	against	the	true	Pythagoreans.

Moderatus	had	a	fresh	take	on	the	Pythagorean	use	of	numbers,	which
helped	explain	how	he	thought	the	plagiarism	had	been	engineered.	The
Pythagoreans,	“for	the	sake	of	a	lucid	exposition,”	wisely	resorted	to
“explanation	by	means	of	numbers”	because	it	was	so	difficult	to	explain	the
first	principles	and	primary	Forms	clearly	in	language.15	For	example,	to	say	the
One	was	above	all	else	did	not	mean	that	the	number	1	itself	was	the	supreme
fundamental	of	the	universe.	Instead,	One	stood	for	a	great	unifying	principle,
implying	equality,	everything	that	causes	stability	and	unchangingness,	the
absence	of	“otherness.”	In	a	“language”	of	numbers,	the	Pythagoreans	had
expressed	everything	that	Plato	would	later	attempt	to	express	in	words.
Moderatus	had	got	neatly	past	Aristotle’s	stumbling	block,	the	notion	that
numbers	were,	for	the	Pythagoreans,	both	abstract	things	and	the	physical
building	materials	of	the	universe.	In	fact,	he	had	made	a	jump	into	the	twentieth
century,	when	some	found	it	easier	to	describe	the	quantum	world	and	the	origin
of	the	universe	in	mathematical	formulas	than	in	imprecise	descriptive	words.

There	had	been	hints	before	of	a	way	of	looking	at	the	world	in	which
physical	matter	was	evil	or	at	least	negative,	and	in	Moderatus	this	view	came
much	more	to	the	fore.	Physical	matter	was	a	“shadow,”	and	that,	to	him,	meant
something	more	negative	than	it	had	to	Plato.	It	was	“not-being.”	But	Moderatus
thought	that	everything	including	matter	came	from	the	One,	and	the	One	was
“the	Good.”	He	failed	to	address	the	question	of	how	anything	wholly	good	can
produce	evil,	but	the	problem	of	the	origin	of	evil	was	looming	on	the
philosophical	horizon.

At	the	opposite	extreme	of	the	Empire,	in	about	A.D.	125,	Theon	of	Smyrna
wrote	Mathematics	Useful	for	Understanding	Plato.	It	included	arithmetic,
harmonics,	astronomy,	geometry,	the	symbolism	of	the	numbers	1	through	10,
different	forms	of	the	tetractus,	and	the	tetractus’	link	with	music	and	the
cosmos.16	“The	one	who	bestowed	it	was	Pythagoras,”	wrote	Theon,	“and	it	has
been	said	that	the	tetractus	appears	indeed	to	have	been	discovered	by	him.”	One
passage	sounded	like	a	collage	of	almost	everything	that	had	been	Pythagorean,
or	been	thought	to	be,	up	to	Theon’s	time.	But	if	Theon’s	mathematics	were



“useful,”	the	mathematics	of	Nicomachus	of	Gerasa,	a	generation	later,	in	the
mid-second	century,	would	prove,	for	better	or	worse,	much	more	so	over	a	very
long	period	of	time.	Nicomachus	was	one	of	those	mathematicians	who	rejected
Euclid’s	abstract	theorems	of	numbers	and	their	proofs,	preferring	to	stick	to
what	he	thought	were	“Pythagorean	mathematics”	and	to	offer	only	numerical
examples.	His	Introduction	to	Arithmetic	was	intended	to	be	not	an	original
contribution,	but,	essentially,	a	textbook,	and	that	was	what	it	turned	out	to	be
for	most	of	Europe	for	more	than	a	thousand	years,	until	the	Renaissance.	The
opening	passages	were	a	paean	to	Pythagoras,	and	largely	because	of	that,	for
centuries—long	past	the	Renaissance,	in	fact—the	Pythagoreans	were	regarded
as	the	source	of	Greek	mathematics.	W.	K.	C.	Guthrie	was	not	overstating	the
case	when	he	wrote,

Everyone	comes	upon	the	name	of	Pythagoras	for	the	first	time	in
school	mathematics;	and	this	has	been	true	from	the	earliest
stages	of	the	Western	cultural	tradition.	None	of	the	ancient
textbooks	which	formed	the	basis	of	the	medieval	curriculum
forgets	Pythagoras.	.	.	.	the	origin	of	this	tradition:	Nicomachus.17

Nicomachus	also	wrote	a	Handbook	of	Harmony	that	linked	the	ratios	of
music	with	the	movements	of	the	heavenly	bodies.	That	book	has	survived
complete,	while	his	two-volume,	avowedly	Pythagorean	Theology	of	Numbers
survives	in	fragments.	Nicomachus	set	up	a	correlation	between	the	numbers	1
through	10	and	the	gods	of	Olympus	that	Iamblichus	and	Proclus	would	later	use
in	a	last-ditch	defensive	effort	against	Christianity,	on	behalf	of	Greek
philosophy	and	pagan	religion.18	Nicomachus’	Life	of	Pythagoras,	now	lost,	was
a	source	for	the	Pythagorean	miracle	stories.*

The	neo-Pythagorean	philosophical	tradition	ended	on	a	strong	note	with	an
extraordinary	writer	and	thinker	named	Numenius	of	Apamea.	Born	in	Syria,	he
produced	his	most	important	work,	only	fragments	of	which	survive,	around	A.D.
160.	His	books	were	available,	however,	long	enough	for	Porphyry	and	others	to
read	and	discuss	them	in	the	next	century	when	they	studied	with	the
philosopher	Plotinus.*

Numenius	believed	that	the	teaching	of	Plato’s	Academy	in	its	purest	form
came	from	Pythagoras,	but	he	wanted	to	know	where	Pythagoras	had,	in	turn,
got	his	ideas	and	knowledge.	He	took	at	face	value	all	the	stories	of	Pythagoras’
travels,	and	he	unearthed	what	seemed	to	him	“Platonic”	philosophy	(that	Plato
got	via	Pythagoras)	among	the	Egyptians,	the	ancient	peoples	of	India,	and	the
Magi	of	Mesopotamia,	as	well	as	in	the	Hebrew	Scriptures.	His	goal	was	to	trace



Magi	of	Mesopotamia,	as	well	as	in	the	Hebrew	Scriptures.	His	goal	was	to	trace
knowledge	to	the	earliest,	highest,	primal	sources,	because,	in	his	opinion,	it	had
all	been	downhill	from	there.	“Who	is	Plato	but	Moses	speaking	Greek?”	he
asked,	and	retold	the	story	of	Moses	and	the	plagues	in	Egypt	from	a	more
Egyptian	point	of	view,	in	which	Pharaoh’s	magicians	had	more	success
combating	the	plagues	than	they	did	in	the	Hebrew	Scriptures.

According	to	Numenius’	most	ambitious	work,	his	six-volume	On	the	Good,
“the	Good”	or	“the	First	God”	(what	other	neo-Pythagoreans	called	the	One)	was
not	completely	inaccessible.	Sense	perceptions	were	not	helpful,	but	a	human
could	work	on	finding	access.	In	an	exquisite	passage,	Numenius	described	the
degree	of	solitude	necessary	for	an	approach	to	the	Good	or	the	First	God:

Like	someone	seated	in	a	lookout	post,	who,	straining	his	eyes,
manages	to	catch	a	glimpse	of	one	of	those	little	fishing	vessels,	a
one-man	skiff	all	alone,	isolated,	engulfed	in	the	waves,	even	so
must	one	remove	oneself	far	from	the	things	of	sense,	and	consort
alone	with	the	Good	alone,	where	there	is	neither	human	being
nor	any	other	living	thing,	nor	any	body	great	or	small,	but	some
unspeakable	and	truly	indescribable	wondrous	solitude—there,
are	the	accustomed	places,	the	haunts	and	celebrations	of	the
Good,	and	it	itself	in	peace,	in	benevolence,	the	tranquil	one,	the
sovereign,	mounted	graciously	upon	Being.19

Numenius	also	urged	a	more	active	approach:	disregarding	“sensibles”	and
devoting	oneself	enthusiastically	to	learning	the	sciences	and	studying	numbers,
so	as	to	attain	the	knowledge	of	what	is	Being.20	He	did	not	regard	Plato	as	a
high	point	in	the	history	of	knowledge—rather	as	part	of	a	downward	slide—but
he	was	not	unappreciative	and	gave	him	a	backhanded	compliment:	“He	was	not
superior	to	the	great	Pythagoras,	but	perhaps	not	inferior	either.”	He	called
Socrates	a	Pythagorean,	and	Plato	a	brilliant	mediator	between	Pythagoras	and
Socrates.

Numenius	introduced	a	doctrine	of	“three	gods”	that	he	called	“typically
Pythagorean.”	Though	it	might	have	been	possible	to	find	hints	of	the	idea	in	the
work	of	other	neo-Pythagoreans	(Moderatus,	for	example,	thought	the
Pythagoreans	believed	in	three	“unities”),	in	Plato,	and	in	the	pseudo-
Pythagorean	literature,	“typically	Pythagorean”	was	an	overstatement.
Numenius’	“three-god”	passages	suggest	he	was	clinging	to	the	theology	of
Pythagoras/Plato	and	the	polytheism	of	the	pagan	world,	while	at	the	same	time
reaching	for	the	concept	of	the	Christian	trinity—a	prodigious	intellectual	and



reaching	for	the	concept	of	the	Christian	trinity—a	prodigious	intellectual	and
theological	balancing	act.	He	saw	a	philosophical	need	for	a	trio	of	roles	in	the
creation	and	sustenance	of	the	universe	and	came	close	to	what	others	would	call
the	Father,	Son,	and	Holy	Spirit.

Numenius’	First	God	was	intrinsically	good,	the	source	of	all	goodness,	and,
more	than	anything	else,	rational,	an	intellect—what	the	earliest	Pythagoreans
had	touched	in	the	discovery	of	the	ratios	of	musical	harmony.	This	god	was
“the	Good”	of	Plato,	“the	One”	of	the	Pythagoreans	and	neo-Pythagoreans.	The
“thinking”	of	this	god	was	the	source	of	life.	In	the	work	of	Numenius—in	a
mind	deeply	informed	by	Plato	but	moving	beyond	him—what	had	come	to	the
first	Pythagoreans	as	a	revelation	was,	at	last,	receiving	a	brilliant	philosophical
and	theological	workout.

Numenius’s	Second	God	was	responsible	for	the	reincarnation	of	souls	and
also	a	mediator	between	the	First	God	and	the	material,	human,	physical	world,
and	had	therefore	to	have	two	natures	in	order	to	understand	and	focus	on	both.
Numenius	gave	a	great	deal	of	thought	to	the	roles	of	the	Second	God	and	the
paradoxes	involved.	Difficulties	that	would	be	the	subject	of	debate	in	the	early
Christian	church	regarding	the	nature	of	Christ	were	already	being	given	deep
consideration	by	the	pagan	Numenius.

The	Third	God	was	either	the	created	cosmos	or	the	world	soul.	Numenius
did	not	make	clear	his	ideas	about	which	it	was	and	seemed	not	to	think	the
question	was	important.	But	he	struck	a	note	firmly	in	the	Judeo-Christian
tradition	(Numenius	loved	the	Hebrew	Scriptures)	of	creation	in	the	image	of
God	when	he	wrote	that	“the	nature	and	Being	that	possess	knowledge	is	the
same	in	the	god	who	gives	and	in	you	and	me	who	receive.”	He	laid	all	this	at
the	feet	of	Pythagoras	with	the	words	“and	that	is	what	Plato	meant	when	he	said
that	wisdom	was	brought	by	Prometheus	to	mankind	together	with	the	brightest
of	fires.”	Ever	since	Plato	wrote	that	passage,	the	intellectual	world	had	thought
he	was	speaking	of	Pythagoras.	Numenius	did	not	disagree.

With	him,	the	problem	of	the	origin	of	evil	at	last	reared	its	head	in	Western
philosophy.	Numenius	wrote	that	all	living	things,	including	the	world	itself,
have	two	souls.	The	good	soul	was	the	soul	he	was	referring	to	when	he	wrote
“the	nature	and	Being	that	possess	knowledge	is	the	same	in	the	god	who	gives
and	in	you	and	me	who	receive.”	The	bad	soul	was	made	up	of	primeval	matter
originating	before	any	god	“adorned	it	with	form	and	order.”	What	was	the
source	of	the	bad	soul?	Was	there	only	one	source	of	everything,	a	good	god,
who	then	“withdrew	from	its	own	nature,”	as	Numenius	put	it,	to	make	room	for
the	existence	of	evil?	(Asking	the	question	in	Pythagorean	words:	Did	the	One
have	to	give	up	something	of	itself	so	that	“plurality”	and	the	rest	of	a	table	of



opposites	could	exist—including	the	opposite	of	good,	evil?)	Numenius’	answer
was	no.	Evil	did	not	emerge	from	Good	or	from	God.	Good	or	God	did	not
relinquish	anything	or	move	aside.	Evil	was	as	old	as	God.	There	was	no	One
overarching	the	opposites.	Both	good	and	evil	were	part	of	primordial	reality.
Anything	else	was	an	incorrect	interpretation	that	had	emerged	when	“some
Pythagoreans	did	not	understand	this	doctrine.”21

After	Numenius,	it	became	impossible	to	differentiate	neo-Pythagoreanism
from	neo-Platonism.

NEAR	THE	END	of	the	second	century	A.D.,	Ptolemy	(or	Claudius	Ptolemaeus),
who	did	not	call	himself	a	Pythagorean	and	was	sometimes	critical	of	the
Pythagoreans,	picked	up	strongly	on	the	idea	of	the	harmony	of	the	spheres	and
gave	it	a	long	future.	He	lived	and	worked	at	Alexandria	and	was	interested	in	a
great	variety	of	subjects,	including	acoustics,	music	theory,	optics,	geography,
and	mapmaking.	His	most	brilliant	accomplishment	was	to	draw	together,	from
previous	ideas	and	knowledge	and	out	of	his	own	mathematical	genius,	the
Earth-centered	astronomy	that	would	dominate	Western	thinking	about	the
cosmos	for	more	than	a	thousand	years.	Ptolemy’s	book	Harmonics	also	had	an
impact	on	the	history	of	science,	because	Johannes	Kepler	read	it	in	the
seventeenth	century.	One	of	Ptolemy’s	sources	was	probably	Archytas.

Ptolemy	knew	that	harmony	in	music	was	based	on	mathematical
proportions	showing	up	in	sound,	and	he	agreed	with	the	earliest	Pythagoreans
that	mathematical	principles	underpin	the	entire	universe,	including	the
movements	of	the	heavens	and	the	makeup	of	human	souls.	He	devoted	nine
chapters	in	Harmonics	to	the	harmony	of	the	spheres,	applying	harmonic	theory
to	planetary	motions.

One	principle	Ptolemy	followed	was	to	“save	the	appearances”—that	is,	not
to	make	up	theories	that	contradicted	what	one	actually	saw	happening.	He
would	not	have	proposed	ten	heavenly	bodies	because	of	the	importance	of	the
number	10,	if	he	could	not	see	ten	in	the	sky.	His	astronomy	looks	superficially,
to	modern	eyes,	as	though	its	inventor	made	up	rules	and	patterns	but	never
looked	up.	Indeed,	Kepler	wrote	that	“like	the	Scipio	of	Cicero	he	seems	to	have
recited	a	kind	of	Pythagorean	dream	rather	than	advancing	philosophy.”22	But
the	evidence	that	seems	overpowering	now	could	not	be	detected	in	Ptolemy’s
day.	When	Aristarchus	of	Samos	proposed	a	Sun-centered	astronomy	in	the	third
century	B.C.,	his	theory	was	dismissed	on	the	sound	basis	that	the	evidence	for	it
was,	simply,	not	there.	For	Ptolemy,	with	musical	harmony,	“what	one	actually
saw	happening”	translated	to	what	one	actually	heard	happening.	The	judgment



of	the	human	ear	about	what	was	pleasing	was	of	first	importance	when
considering	theoretical	possibilities.

The	system	of	heavenly	harmony	that	Ptolemy	worked	out	was	more
complicated	than	previous	ones.	The	early	Pythagoreans	may	have	connected	the
intervals	of	the	octave,	fourth,	and	fifth	(rather	than	a	complete	scale)	to	a
cosmic	arrangement.	Or	perhaps	the	ten-body	cosmos,	with	an	octave	separating
the	central	fire	and	the	outer	fire,	did	constitute	a	complete	scale	once	all	the
intervals	between	were	filled	in.	Plato’s	“Myth	of	Er”	and	Cicero’s	“Dream	of
Scipio”	proposed	cosmic	scales	of	eight	or	seven	notes	respectively.	Pliny,	much
more	specifically,	would	have	had	the	cosmos	sounding	the	following	scale:

Ptolemy,	from	a	medieval	book	illustration

Earth 	 C

	 (whole	tone) 	

Moon 	 D

	 (half	tone) 	

Mercury 	 E	flat

	 (half	tone) 	

Venus 	 E

	 (one	and	a	half	tones) 	



Sun 	 G

	 (whole	tone) 	

Mars 	 A

	 (half	tone) 	

Jupiter 	 B	flat

	 (half	tone) 	

Saturn 	 B

	 (one	and	a	half	tones) 	

Stars 	 D23*

Nicomachus,	earlier	in	Ptolemy’s	century,	had	also	assigned	notes	to	each	of	the
planets,	but	in	his	scale	Earth	was	silent	because	it	was	sitting	still.

When	Ptolemy	worked	out	his	own	system,	he	considered	it	such	a
significant	accomplishment	that	he	had	it	engraved	on	a	slab	of	stone	at	Canopus
near	Alexandria.24	He	felt	that	he	had	made	a	connection	with	ancient
knowledge,	taking	the	concept	of	the	music	of	the	spheres	back	to	something
close	to	the	Pythagorean	original.	Venus	and	Mercury	shared	a	note;	the	stars
were	in	the	chorus,	with	the	highest	note;	the	four	elements	sounded	the	two
lowest	notes.	For	the	first	time	perhaps	since	the	ancient	Pythagoreans,	the
intervals	used	were	larger	than	tones,	half	tones,	and	one	and	a	half	tones.	Bruce
Stephenson,	who	wrote	that	Ptolemy’s	Canopic	Inscription	is	so	difficult	to
interpret	that	no	one	can	claim	to	understand	it	completely	and	decipher	it
correctly,	nevertheless	made	the	following	attempt.25	The	notes	(on	a	piano)	are
rough	equivalents	of	what	they	would	have	been	in	the	tuning	in	late	antiquity:

	

Fixed
stars

D (a	whole	tone	above	Saturn)

Saturn C (a	fourth	above	Jupiter)

Jupiter G (a	fourth	above	the	Sun	and	a
whole	tone	above	Mars)

Mars F (a	fourth	above	Venus	and
Mercury)



Mercury)

Sun D (a	whole	tone	above	Venus
and	Mercury)

Venus	and
Mercury

C (a	fourth	above	the	Moon)

Moon G (a	fourth	above	fire,	air)

fire,	air D (a	whole	tone	above	water,
earth)

water,
earth

C 	

What	might	have	been	the	most	significant	part	of	Ptolemy’s	Harmonics
was	lost	before	the	Middle	Ages.	It	is	not	certain	whether	some	text	recovered	in
the	fourteenth	century	by	the	Byzantine	Nikephoros	Gregoras	is	really	part	of
what	was	missing.	In	the	seventeenth	century,	Kepler	translated	the	Harmonics
and	attempted	to	re-create	the	last	three	chapters,	an	exercise	that	helped	him
find	the	way	to	one	of	his	most	important	discoveries.	In	spite	of	how	little	is	left
of	the	details	of	Ptolemy’s	musical	theory	and	the	fact	that	what	is	left	is	not
fully	understood,	Stephenson	wrote,

What	is	clear	today—and	was	clear	to	Kepler	at	the	beginning	of
the	seventeenth	century—is	that	Ptolemy	thought	that	orderly
motion,	in	the	heavens	as	in	music,	followed	only	certain	kinds	of
patterns,	so	that	study	of	the	patterns	in	one	field	could	in	theory
elucidate	those	in	the	other.	Rational	motion	obeyed	the	same	laws
everywhere,	in	the	celestial	spheres	as	in	the	strings	of	the	lyra,	not
for	any	mystical	reason	but	precisely	because	those	were	the	laws
of	rational	motion.	.	.	.

The	motions	of	the	planetary	spheres	could	similarly	be
understood	more	deeply	through	an	awareness	of	the	principles
they	shared	with	musical	harmony.	In	Ptolemy’s	Harmonics,
connections	such	as	these	were	assumed	to	be	rational,	although
they	were	not	assumed	to	be	understood—yet—in	detail.26

In	Ptolemy,	the	Pythagorean	conviction	that	the	universe	is	rational	and	that
numerical	relationships	underpin	nature,	and	the	belief	in	an	overall	harmony
binding	creation	together—all	were	here.	But	humans,	if	Ptolemy	can	be	taken



binding	creation	together—all	were	here.	But	humans,	if	Ptolemy	can	be	taken
as	an	example,	though	no	less	obsessive	about	discovering	this	harmony,	had
grown	more	patient	about	teasing	out	examples	of	it,	less	prone	to	force	the
patterns,	a	little	more	willing	to	be	taught	by	nature	itself	how	the	numbers	play
out.



CHAPTER	13

The	Wrap-up	of	Antiquity
Third–Seventh	Centuries	A.D.

DIOGENES	LAERTIUS,	THE	earliest	author	to	write	a	biography	of	Pythagoras	that
still	survives	substantially	today,	either	was	born	in	the	town	of	Laerte	in	Cilicia
—a	region	that	in	the	days	of	the	Roman	Republic	was	the	feared	“Pirate	Coast”
and	is	now	southeastern	Turkey—or	was	a	member	of	a	prominent	Roman
family	known	as	the	Laertii	and	born	in	Rome.	He	was	probably	writing	late	in
the	second	or	early	in	the	third	century,	during	the	reigns	of	the	emperors
Septimius	Severus	and	his	son	Caracalla.	Not	only	is	nothing	biographical
known	with	certainty	about	him;	he	also	never	put	his	own	philosophy	in
writing.

Reading	his	Life	of	Pythagoras,	however,	acquaints	one	rather	well	with
Diogenes	Laertius.	His	research	method	set	him	apart	and	makes	him	a
delightful	writer.	Gathering	as	much	information	as	he	could,	often	in	bits	and
pieces,	he	put	together	a	rather	informally	written	collection	of	biographical	and
bibliographical	material,	summaries	of	doctrines,	sayings	of	philosophers,	his
own	poetry	about	them,	and	comical	and	scandalous	stories.	Most	of	the	time	he
scrupulously	named	his	sources,	and	he	liked	to	contrast	one	piece	of
information	with	another,	sometimes	pausing	to	try	to	assess	their	credibility.
The	greatest	attraction	and	value	of	Diogenes	Laertius’	writing	comes	from	his
verbatim	quoting	(sometimes	at	length)	from	authors	whose	works	are	otherwise
lost.	Many	of	his	sources	are	completely	unknown	except	for	his	mention	and
the	excerpts	in	his	books.	Pythagoras	was	not	the	only	ancient	thinker	to	interest
him.	The	Life	of	Pythagoras	was	Book	VIII	of	his	ten-volume	Lives	of	the
Philosophers.

Much	more	can	be	said	about	Porphyry	and	Iamblichus,	both	of	whom	were
major	neo-Platonic	philosophers	in	their	own	right.	Iamblichus	was	Porphyry’s
student,	and	Porphyry	was	in	turn	a	disciple	of	the	eminent	Roman	philosopher
Plotinus.

Porphyry	lived	only	a	little	later	than	Diogenes	Laertius.	He	was	born	in
about	A.D.	233	in	Tyre,	in	Phoenicia	(now	in	southern	Lebanon,	then	part	of	the
Roman	Empire),	which	may	explain	why	he	was	the	only	one	of	the	three



biographers	to	link	Pythagoras’	father	with	Tyre.	“Porphyry”	was	not	the	name
his	parents	gave	him.	He	was	Malchus,	meaning	“king,”	and	changed	his	name
when	he	was	in	Athens	in	his	early	twenties	at	the	suggestion	of	his	teacher,	the
philosopher	Longinus.	Longinus	knew	that	the	area	of	Malchus’	birth	was
famous	for	a	purple	dye	made	from	the	crushed	shells	of	sea	snails	mixed	with
honey.	The	color	that	resulted	was	porphyry,	so	highly	prized	and	expensive	that
it	had	come	to	symbolize	royalty.	The	connection—Malchus/king	and
Porphyry/royalty—suggested	the	name	that	may	at	first	have	been	only
Longinus’	nickname	for	him.

For	ten	years,	Porphyry	immersed	himself	in	Platonic	and	Pythagorean
doctrine	at	the	feet	of	Longinus,	whom	someone	described	as	“a	living	library
and	walking	museum,”	and	during	this	period	he	published	some	unofficial
oracles,	utterances	of	mediums	put	into	trances	at	private	séances.1	When	he
moved	to	Rome	to	study	with	the	even	more	eminent	Plotinus,	who	was	carrying
forward	Pythagorean	and	Platonic	themes	and	the	thoughts	of	other	philosophic
predecessors	in	a	creative	synthesis	of	his	own,	his	new	teacher	turned	him	into	a
thoroughgoing	advocate	of	a	rational,	intellectual	approach	to	truth.	However,
neither	Porphyry	nor	Plotinus	ever	entirely	discounted	magic	and	the
supernatural.	As	the	historian	E.	R.	Dodds	wrote	of	the	period,	“Could	any	man
of	the	third	century	deny	it?”2

Romans	were	looking	for	encouragement	wherever	they	could	find	it,	in	the
natural	or	the	supernatural.3	Civil	wars	were	following	one	after	the	other.	The
news	of	a	new	emperor	hardly	had	time	to	spread	before	it	was	outdated.	Rome
was	engaged	in	ruinously	expensive	conflicts	on	two	fronts—with	the	Persians
in	the	Orient,	with	the	Goths	and	other	Germanic	tribes	to	the	northeast	on	the
European	river	frontiers	and	the	Black	Sea.	Septimus	Severus—Julia	Domna’s
husband—and	his	son	Caracalla	had	built	the	elaborate	Baths	of	Caracalla	at	the
beginning	of	the	century,	but	most	of	the	decades	since	had	been	a	period	of
enforced	austerity,	with	civilians	sacrificing	nearly	all	comforts	and	amenities	to
make	sure	the	Roman	legions	could	be	paid	and	would	remain	loyal.	Epidemics
were	rampant;	imperial	finances	a	disaster.	The	government	put	less	and	less
gold	and	silver	in	the	coins,	and	the	currency	collapsed,	with	prices	rising	nearly
1,000	percent	between	the	years	258	and	275.	This	debacle	would	have	touched
Porphyry	almost	anywhere	he	might	have	lived	in	the	Empire,	but	he	was	at	the
center	of	it,	in	Rome	itself.

In	the	midst	of	what	for	many	amounted	to	sheer	misery,	Plotinus	continued
to	teach.	He	led	seminars,	wrote	essays	(which	Porphyry	collected	in	six	books
called	the	Enneads)	and	moved	in	aristocratic	circles	that	included	the	court	of



the	emperor	Gallienus,	who	had	intellectual	and	philosophical	pretensions	of	his
own	and	apparently	enjoyed	the	philosopher’s	company.	Edward	Gibbon
candidly	described	Gallienus	as

a	master	of	several	curious	but	useless	sciences,	a	ready	orator
and	an	elegant	poet,	a	skillful	gardener,	an	excellent	cook,	and	a
most	contemptible	prince.	When	the	great	emergencies	of	the
State	required	his	presence	and	attention,	he	was	engaged	in
conversation	with	the	philosopher	Plotinus,	wasting	his	time	in
trifling	or	licentious	pleasures,	preparing	his	initiation	to	the
Grecian	mysteries,	or	soliciting	a	place	in	the	Areopagus	of
Athens.4

Gallienus	became	enthusiastic	about	Plotinus’	plan	to	create	Plato’s	Republic	in
the	countryside	near	Rome.	When	the	emperor’s	interest	waned,	the	idea	was
abandoned,	and	the	city	of	Platonopolis	was	never	built.

Porphyry’s	mentor	had	a	high	regard	for	the	Pythagorean	and	neo-
Pythagorean	concept	of	the	One.	It	was,	for	Plotinus,	the	First	Principle,
transcending	all	else.	The	One,	the	Spirit,	and	the	Soul	were	his	trinity.	Porphyry
heard	him	teach	that	it	was	not	possible	even	to	think	about	the	One,	much	less
to	define	it.	There	was	no	movement	or	number	to	it.	It	was	just	One,	unity,
absolute	pure	reality	and	goodness,	never	changed	or	diminished.5	Plotinus’	One
was	close	to	the	concept	of	God	in	Christianity,	except	that	it	never	intervened	in
the	world.	It	remained	external,	outside	all	orders	of	being.	Yet,	in	the	words	of
the	historian	Michael	Grant,	Plotinus	thought	the	One	“pours	itself	out	in	an
eternal	downward	rush	of	generation	which	brings	into	being	all	the	different,
ordered	levels	of	the	world	as	we	know	it,	in	a	majestic,	spontaneous	surge	of
living	forms.”6	This	meant	that	all	levels	of	the	cosmos,	all	levels	of	existence,
all	living	beings,	were	linked.	Mortal	bodies	were	base	and	degraded,	but	every
soul	had	the	potential	to	rise	to	reunion	with	the	One	by	means	of	intellectual
work	and	discipline,	and	life	itself	implied	a	longing	for	that	reunion.	The	quest
required	banishing	space,	time,	and	body	into	a	nothingness	even	more	profound
than	the	solitude	of	Numenius’	little	“one-man	skiff,	all	alone.”	Plotinus	claimed
he	had	experienced	this	mystic	union	himself	and	there	was	nothing	“magic”
about	it,	“except	the	true	magic	which	is	the	sum	of	love	and	hatred	in	the
universe.”7

This	philosophy	that	Porphyry	was	studying	was	not	depressing,	but—
perhaps	because	of	conditions	in	Rome	or	for	personal	reasons—he	sank	into
melancholy	and	considered	taking	his	own	life.	Plotinus	prescribed	travel,	so	he



melancholy	and	considered	taking	his	own	life.	Plotinus	prescribed	travel,	so	he
went	to	Sicily.	In	269	or	270,	Plotinus	died	shortly	after	retiring	to	the	country
and	Porphyry	returned	to	become	the	head	of	his	school.

Perhaps	Dodd’s	description	of	Porphyry	as	“an	honest,	learned,	and	lovable
man,	but	no	consistent	or	creative	thinker”8	was	correct,	but	he	was	a	prolific
writer.	In	addition	to	publishing	his	teacher’s	essays,	he	wrote	more	than	seventy
books	on	metaphysics,	literary	criticism,	history,	and	the	allegorical
interpretation	of	myth,	as	well	as	his	short	Life	of	Pythagoras.	He	classed
Pythagoras	with	Orpheus,	Herakles,	and	Jesus,	as	“divine	heroes”	who	led
exemplary,	devout	lives	and	became	immortal,	but	like	many	other	neo-
Platonists	of	his	generation	he	saw	Christianity	as	a	dire	threat	to	the	Platonic
tradition.	Porphyry	expressed	his	fears	in	a	famous,	now	lost	book	called	Against
the	Christians	and	in	letters	to	the	soon-to-be	wife	of	his	old	age,	Marcella.
Though	Christianity	was	still	struggling,	it	was	nearing	the	political	triumph	that
would	occur	not	long	after	Porphyry’s	death,	and	its	adherents	thought	of	Jesus
not	as	a	divine	hero	but	as	equal	to	or	one	with	God.	Drawing	believers	and
potential	believers	away	from	Jesus	was	not	the	only	motivation	for	Porphyry’s
biography	of	Pythagoras—he	intended	it	as	a	popular	introduction	to	Platonic
philosophy—but	he	did	hope	that	getting	it	before	the	public	would	provide
competition	for	the	Christian	Gospels.	Readers	then,	like	modern	ones,	were
more	drawn	to	a	personality	than	to	a	collection	of	philosophical	ideas,	and,	in
Khan’s	words,	“among	the	Neoplatonists,	it	was	Porphyry	who	reinstated
Pythagoras	as	the	patron	saint	of	Platonic	philosophy,	in	the	tradition	of
Nicomachus	and	Numenius.”9

Porphyry	shared	Numenius’	interest	in	ancient	sources	of	Pythagoras’
knowledge.	He	concluded	that	the	Egyptians,	the	Hebrews,	and	the	ancient
peoples	of	India	and	Mesopotomia	had	possessed	not	only	invaluable	but
identical	primordial	wisdom,	and	that	Pythagoras	was	the	earliest	to	have	this
wisdom	among	the	Greeks,	with	Plato	later	putting	it	most	fully	into	words.	True
to	his	teacher	Plotinus,	Porphyry	preferred	a	rational,	intellectual	approach	to
truth,	but	his	enthusiasm	for	the	richness	and	mystery	of	ancient	sources	of
wisdom,	and	the	fact	that	he	lived	in	highly	superstitious	times,	prevented	him
from	dismissing	miraculous	reports	about	Pythagoras.	He	also	had	what	Dodds
described	as	“an	incurable	weakness	for	oracles,”10	for	which	the	rationalism	of
Plotinus	had	not	succeeded	in	providing	a	permanent	remedy.	Porphyry	died	in
A.D.	305,	when	he	was	seventy	years	old,	soon	after	taking	Marcella,	to	whom	he
had	written	many	eloquent	letters	having	to	do	with	Platonic	thought,	as	his
young	bride.



Iamblichus	wrote	the	third	and	longest	of	the	three	biographies	of
Pythagoras.	He	was	Porphyry’s	pupil,	but	also	a	rival.	Porphyry	may	have	had
an	incurable	weakness	for	oracles	and	not	denied	the	existence	of	supernatural
experience,	but	Plotinus	had	convinced	him	that	the	approach	to	ultimate	truth
and	reunion	with	the	divine	was	through	the	intellect,	the	rational,	and	had
nothing	to	do	with	magic.	Not	so	Iamblichus.	For	him,	that	reunion	could	only
be	achieved	through	ritual	and	magical	evocation.	His	treatise	De	Mysteriis	has
been	dubbed	a	“manifesto	of	irrationalism.”11

Iamblichus	was	born	in	about	A.D.	260	in	Chalcis,	in	Syria,	and	was	a
wealthy	man	who	owned	slaves	and	suburban	villas,	but	he	dedicated	his	life	to
contemplation,	teaching,	and	writing,	had	many	devoted	disciples,	and	became
widely	renowned	as	the	“divine”	Iamblichus.	The	emperor	Julian,	in	the	next
century,	exclaimed	that	Iamblichus	was	“posterior	indeed	in	time	but	not	in
genius	to	Plato.”

Iamblichus	was	much	more	focused	on	Pythagoras	than	was	Porphyry,
whose	Life	of	Pythagoras	was	one	volume	out	of	a	ten-volume	Lives	of	the
Philosophers.	Iamblichus’	On	the	Pythagorean	Way	of	Life	(his	biography	of
Pythagoras)	was	the	introductory	book	to	a	work	of	nine	or	ten	volumes	with	the
collective	title	On	the	Pythagorean	School,	all	of	which	were	about	Pythagoras
and	the	Pythagoreans.	Iamblichus	attempted	to	put	into	this	compendium
everything	that	was	known	about	Pythagoras	and	Pythagorean	doctrine	and
philosophy,	reflecting	the	view	that	Plato	got	most	of	his	ideas	from	Pythagoras.
However,	in	spite	of	his	focus,	to	Iamblichus	a	mastery	of	philosophy	meant
more	than	knowledge	of	everything	Pythagorean.	It	meant	an	understanding	of
Aristotelian	logic	and	Plato’s	dialogues.	This	was,	in	its	way,	Iamblichus’
attempt	to	provide	what	Plato	had	recommended,	a	thorough	grounding	in
everything	one	could	know	about	and	through	numbers,	followed	by	dialectic,
and	Iamblichus’	contemporaries	held	him	in	high	regard	for	his	ability	to	reduce
Plato’s	and	Aristotle’s	thoughts	to	a	more	manageable	form.	He	tried	to	make
converts	for	Platonism	by	using	logical	arguments	and	warnings	of	fearful
consequences	for	those	who	failed	to	pursue	a	philosophical	life.	Iamblichus
died	in	about	A.D.	330,	during	the	reign	of	the	emperor	Constantine.

From	that	time	on,	neo-Platonic	philosophy	would	include	a	Pythagorean
emphasis	on	mathematics	and	numbers,	adding	some	numerology	that	had	no
Pythagorean	roots.	Neo-Platonists	would	assume	that	Plato’s	Timaeus	derived
from	Pythagoras	via	a	real	Timaeus	of	Locri	who	wrote	On	the	Nature	of	the
Cosmos	and	the	Soul—which	was	actually	one	of	the	pseudo-Pythagorean
books.	In	the	fifth	century	A.D.,	the	philosopher	Proclus	would	open	his



Commentary	on	the	Timaeus:	“It	is	agreed	by	all	that,	since	he	acquired	the	book
which	the	Pythagorean	Timaeus	composed	On	the	Universe,	Plato	undertook	to
write	the	Timaeus	in	the	Pythagorean	manner.”	“Pythagorean	thought”	had
assumed	the	form	in	which	it	was	going	to	survive	for	a	thousand	years	and
reach	Copernicus.

BY	A.D.	400,	efforts	to	block	the	impact	of	the	Christian	Gospels	in	the	Greco-
Roman	world	had	failed.	Proclus,	the	last	major	Greek	philosopher—born	in
Constantinople,	educated	in	Alexandria	and	Athens,	and	later	head	of	what
remained	of	Plato’s	Academy—would	go	on	for	much	of	the	next	century
opposing	Christianity,	but	that	was	an	exercise	in	futility,	with	unintended
consequences.	He	and	those	who	read	him	were	largely	responsible	for	a	great
spread	of	neo-Platonism	throughout	the	Roman,	Byzantine,	and,	later,	Islamic
regions	of	the	world,	but,	more	than	that—and	it	would	surely	have	caused	him
chagrin	to	learn	of	it—Proclus’	work,	thanks	to	a	mistaken	identity,	became	a
major	influence	in	Christian	theology.	His	philosophy	was	adapted	by	a	writer	of
his	own	century	who	was	for	a	long	time	confused	with	the	New	Testament
figure	Dionysius	the	Areopagite,	a	first-century	convert	of	the	Apostle	Paul.	In
the	writing	of	this	“pseudo-Dionysius,”	the	philosophy	of	Proclus	passed	into
Christian	thought.

The	advance	of	Christianity	in	the	Empire	took	place	on	several	levels.	In	at-
home,	family	piety,	it	replaced	the	old	household	gods.	House	churches,	with	a
few	families	and	individuals	(before	there	were	larger	Christian	communities)
competed	with	pagan	cults	all	over	the	Empire	with	steadily	increasing	success.
Among	intellectuals,	Christian	authors	co-opted	excerpts	from	pagan	books
when	the	wording	seemed	equally	applicable	to	a	Christian	context,	or	when
they	hoped	to	undergird	Christian	teaching	by	pointing	out	that	the	pagan
material	represented	an	independent	witness	to	truths	now	more	fully	explained.
Some	of	these	fragments	survived	without	much	change	at	all.	In	fifth-century
Christian	sermons	and	books,	phraseology	and	imagery	appeared	that	clearly	had
originally	come	from	a	pagan	oracle.12	During	its	first	three	centuries,
Christianity	had	very	little	interest	in	or	influence	on	politics,	but	that	changed
with	the	conversion	in	312	of	the	emperor	Constantine,	who	ruled	first	in	Rome
and	finally	from	Byzantium	over	both	the	eastern	and	western	halves	of	the
Empire.	Christianity	became	the	official	religion,	and	after	that	the	Empire	was
mostly	ruled	by	Christians,	though	some	of	them	followed	Arian	teachings	and
did	not	accept	the	full	divinity	of	Jesus.

Christianity’s	victory	would	have	been	much	more	difficult	had	it	not	been



able,	to	such	a	large	extent,	to	accept	and	assimilate	the	great	pagan	intellectual
and	philosophical	traditions.	It	might	have	been	as	short-lived	and	ineffectual	as
most	of	the	mystery	cults	if	its	leaders	had	listened	to	men	and	women	who
advised	complete	rejection	of	pagan	Greek	and	Roman	culture	and	learning.
However,	beginning	with	the	Apostle	Paul,	many	Christian	theologians	and
writers	were	educated	men	with	tremendous	respect—indeed,	great	love—for
this	heritage.	When	Paul	first	arrived	in	Athens,	he	expected	that	this	city,	which
felt	like	his	intellectual	home	and	obviously	treasured	learning	and	wisdom,
would	welcome	with	open	arms	and	minds	the	new	knowledge	he	brought.	At
first	it	seemed	he	was	right,	and	the	Athenians’	eventual	rejection	of	his	views
was	one	of	the	lowest	points	of	Paul’s	life.

To	many	early	Christian	intellectuals	it	seemed,	as	it	had	to	Paul,	that	most
of	the	older	culture,	wisdom,	and	knowledge	of	their	intellectual	world,	which
had	so	informed	and	inspired	them,	was	consistent	with	the	greater	truth	they
believed	they	now	knew.	All	had	been,	in	a	way,	an	intellectual	preparation.
They	felt	compelled	to	bring	the	pagan	philosophical	heritage	into	the	embrace
of	Christian	thought,	make	it	part	of	Christian	education,	and	show	that	there
was	a	continuum.	The	early	church	became	a	guardian	of	the	treasures	of
classical	literature,	both	in	its	actual	preservation	of	the	books	and	in	the	way
many	key	ideas	were	assimilated	into	Christian	writing	and	thinking.	The	Gospel
of	John	in	the	New	Testament	opens	with	the	words	“In	the	beginning	was	the
Word.”	In	the	original	Greek,	“Word”	is	logos,	and	probably	the	best	translation
of	logos	is	not	“word”	but	“reason”	or	“rationality.”	With	that	in	mind,	it	is
possible	to	read	John’s	words	with	Platonic	and	Pythagorean	eyes:

In	the	beginning	was	Reason.	And	Reason	was	with	God,	and
Reason	was	God.	Reason	was	with	God	in	the	beginning.
Through	Reason	all	things	were	made;	without	Reason	nothing
was	made	that	has	been	made.	In	Reason	was	life,	and	that	life
was	the	light	of	men.	.	.	.	Reason	became	flesh	and	lived	among
us.	We	have	seen	his	glory,	the	glory	of	the	One,	who	came	from
the	Father,	full	of	grace	and	truth.13

A	Pythagorean	mathematical	interpretation	of	nature	presented	no	conflict
with	Christian	doctrine.	St.	Augustine,	one	of	those	who	strove	most
successfully	to	bring	Christian	belief	and	pagan	philosophy	into	harmony,
mentioned	the	importance	of	numbers	in	his	City	of	God:	“Not	without	reason
has	it	been	said	in	praise	of	God:	‘Thou	hast	ordered	all	things	in	measure,	and



number,	and	weight.’	”14	Though	the	doctrine	of	reincarnation	was	discarded	in
favor	of	Christian	immortality,	the	image	of	the	body	being	a	tomb	or	prison	for
the	soul	was	retained.	Clement	of	Alexandria	called	it	a	Pythagorean	doctrine
conveyed	through	Philolaus.15

The	prodigious	efforts	of	intellectuals	like	Augustine	to	seize	upon
similarities	and	work	through	conflicts	in	hope	of	finding	deeper	levels	of
agreement	encouraged	the	Christian	church	to	undertake	a	mission	to	preserve
classical	Greek	and	Roman	literature	in	a	more	deliberate	fashion.	In	Italy	at
Monte	Cassino,	a	monastic	center	of	scholarship	called	St.	Benedict’s	was
established	in	A.D.	529,	and	other	centers	soon	followed,	particularly	in	the	sixth
and	seventh	centuries,	when	Irish	missionaries	reached	England	and	then	the
Rhine,	and	Gothic	missionaries	reached	the	Danube.	Because	hardly	anyone	on
the	mission	frontiers	spoke	Greek,	Greek	writings	failed	to	spread	much	beyond
the	borders	of	the	late	Roman	Empire,	but	even	remote	monasteries	were	able	to
preserve	some	Latin	works	while	one	horde	of	invaders	after	another	swept
across	Europe—Goths,	Vandals,	Franks,	and	later	Norsemen.	The	treasured,
scattered	works	would	be	the	only	ancient	classical	literature	known	in	Latin
Europe	for	centuries.	It	is	difficult	in	the	twenty-first	century—because	so	much
ancient	literature	has	been	recovered—to	realize	how	dim	and	fragmentary
knowledge	of	the	past	became,	how	pitifully	little	was	remembered,	how
completely	civilization	had	to	start	over	in	the	Middle	Ages.

Of	the	few	works	that	survived,	one	was	a	Latin	translation	by	a	fourth-
century	Greek	Christian	scholar,	Chalcidius,	of	the	first	fifty-three	chapters	of
Plato’s	Timaeus.	Others	were	a	fragment	of	Cicero’s	translation	of	the	same
dialogue,	the	works	of	the	“encyclopedist”	Macrobius,	Nicomachus’
Introduction	to	Arithmetic	in	a	slightly	revised	Latin	translation,	and	De
institutione	musica,	possibly	also	a	paraphrase	of	Nicomachus.	The	latter	two
were	produced	by	Boethius,	a	Roman	of	the	late	fifth	and	early	sixth	centuries.
Why	these	and	not	others?	Much	had	to	do	with	the	language	in	which	a	work
was	written	or	into	which	it	was	translated.	Now	we	return	to	Rome	as	her	great
empire	began	to	disintegrate.

From	the	close	of	the	third	century	and	the	reign	of	the	emperor	Diocletian,
the	Roman	Empire	had	no	longer	been	ruled	by	one	emperor.	Sometimes	there
had	been	two,	sometimes	more.	Though	the	administrative	division	line	between
the	Empire	in	the	east	and	the	Empire	in	the	west	was	not	deliberately	drawn
along	a	language	frontier	between	areas	that	spoke	Greek	and	those	that	spoke
Latin,	over	time	it	began	to	seem	so,	as	Greek	and	Latin	came	to	dominate	in
their	respective	regions.	With	the	institution	of	bishoprics,	a	parallel	division



took	place	in	the	church,	with	Christians	in	the	East	regarding	the	patriarch	of
Constantinople	as	their	religious	authority	while	those	in	the	West	followed	the
bishop	of	Rome,	the	pope.

It	was	a	dangerous,	uncertain	time	in	both	parts	of	the	Empire,	with
barbarian	tribes	pushing	one	another	around	the	European	map	and	not	stopping
when	they	reached	borders	that	had	been	secure	for	centuries,	close	to	Rome	and
Constantinople.	On	New	Year’s	Eve	of	406,	the	Rhine	froze,	rendering	the	river
useless	as	a	natural	boundary	between	Roman	Gaul	and	tribes	on	the	other	side.
The	Roman	legions	previously	guarding	the	Rhine	had	been	recalled	to	hold
defenses	against	barbarians	nearer	to	home,	and	Vandals,	Alans,	and	Sueves
poured	into	Gaul,	moving	inexorably	south	and	west	across	the	countryside,
marauding,	plundering,	and	burning,	meeting	virtually	no	resistance.	Feeling
pressure	on	too	many	frontiers,	and	with	her	former	lands	in	Gaul	now	“like	an
enormous	funeral	pyre,”	Rome	was	nearing	the	end	of	her	tether,	but,	though	her
Empire	was	divided,	the	city	herself	had	remained	unconquered	for	more	than	a
thousand	years,	and	it	was	unthinkable	that	this	could	change.16	Then	in	A.D.	410
the	Visigoths	sacked	Rome.	It	would	be	more	than	another	half	century	before
the	last	emperor	of	the	western	Empire	ceased	to	rule,	but	this	date	marked	a	loss
of	morale	and	political	identity	that	would	never	be	recovered.	Some	thought	the
Christian	God	had	failed	the	city.

During	this	period,	a	writer	named	Ambrobius	Theodosius	Macrobius	pulled
together,	as	Pliny	had	done,	a	body	of	knowledge	from	a	vast	variety	of	sources
with	little	or	no	attempt	to	discriminate	between	what	was	authentic	and	what
legend,	forgery,	reinterpretation,	and	inaccurate	retelling.17	He	said	he	was	not	a
Roman,	though	he	served	Rome	in	official	capacities	at	home	and	in	Spain	and
Africa.	He	also	seems	not	to	have	been	a	Christian,	in	an	era	when	most	offices
as	highly	ranked	as	those	he	held	were	filled	by	Christians.	But	whatever	else	he
was	or	wasn’t,	Macrobius	was	indeed	an	“encyclopedist,”	and	prone	to
expanding	on	the	original.	Largely	thanks	to	him,	Cicero’s	“Dream	of	Scipio”
would	be	popular	in	the	Middle	Ages,	but	when	Macrobius	wrote	about	the
“Dream,”	what	Cicero	had	covered	in	a	few	pages	took	him	nearly	sixteen	times
that	many,	for	he	added	commentary	and	inserted	the	opinions	of	other	authors.
The	result	was	not	very	original,	but	for	scholars	in	the	Middle	Ages	it	would	be
a	treasure.

Macrobius	preserved,	in	Latin,	much	that	would	otherwise	not	have
survived,	particularly	from	the	neo-Pythagoreans	and	neo-Platonists,	whom	he
knew	primarily	through	the	writings	of	Porphyry.	Medieval	scholars	would	learn
from	him	that	Pythagoras	discovered	the	ratios	of	musical	harmony,	and	would



read	the	story	that	this	happened	in	a	blacksmith	shop.	They	would	know
Macrobius’	quotation	from	Cicero	about	the	harmony	of	the	spheres	and	would
glean	from	him	ideas	about	connecting	the	musical	ratios	and	the	planetary
distances,	but	nothing	of	a	link	between	specific	notes	and	specific	planets,
though	both	Nicomachus	and	Ptolemy	had	worked	these	out	before	Macrobius’
time.	The	Pythagorean	view	of	numbers	underlying	everything	in	the	universe,
and	the	way	it	was	exemplified	by	linking	the	harmonic	ratios	with	the
arrangement	of	the	cosmic	bodies,	would	become	standard	in	medieval	writing
on	music	theory,	but	not	so	well	formulated	as	it	had	been	by	ancient	scholars,
getting	vaguer	and	less	well	understood	as	time	passed.

The	Visigoths	who	sacked	Rome	in	410	did	not	consolidate	their	victory	by
establishing	a	new	government.	For	a	while	the	imperial	government	limped
along,	sometimes	surprisingly	effectively,	though	virtually	all	of	the	western	part
of	the	Empire	was	now	overrun	by	Germanic	tribes	who	continued	to	make	and
break	agreements	and	alliances	with	Roman	and	local	authorities	and	to	war
among	themselves.	German	settlers	in	Italy	rather	quickly	converted	to
Christianity,	many	of	them	at	first	to	the	form	known	as	Arianism	which	had
been	declared	a	heresy	by	the	Council	of	Nicaea	in	325;	but	eventually	they
entered	Roman	Catholicism.

In	429,	the	Vandals	accomplished	an	end	run	through	Spain,	invaded	North
Africa,	and	became	a	new	pirate	threat	in	the	Mediterranean.	A	quarter	century
later,	it	was	their	turn	to	sack	Rome.	Again,	the	invaders	did	not	stay,	but	when
they	left	they	carried	a	former	empress	and	her	daughters	back	with	them	to
Africa.	On	August	23,	476,	the	German	troops,	who	by	then	actually	made	up
most	of	the	Roman	army	in	Italy,	elected	their	general	Odoacer	as	king	and
overthrew	the	last	Roman	emperor,	Romulus	Augustus.	The	Roman	Empire	in
the	West,	long	in	its	death	throes,	at	last	expired.	In	theory,	the	emperor	of	the
eastern	Roman	Empire,	Zeno,	now	ruled	the	entire	Empire,	but	Odoacer,	though
in	no	position	to	reestablish	anything	like	the	former	Empire,	was,	in	effect,	an
independent	ruler,	while	various	German	factions	in	Italy	could	only	war
uselessly	among	themselves	and	with	other	tribes	who	continued	to	appear	on
the	horizon.	In	the	western	Empire,	including	its	former	vast	holdings	to	the
north	in	Europe,	one	might	assume	that	the	Dark	Ages	had	begun.	They	had	not,
quite.

Boethius,	born	in	480,	after	the	overthrow	of	the	last	Roman	emperor,	was	a
Roman	aristocrat	in	an	era	when	conventional	wisdom	would	seem	to	indicate
there	should	no	longer	have	been	such	a	thing.	Roman	life	as	usual	had	not,
however,	completely	ended	in	the	city	and	its	environs.	The	Roman	civil	service



continued	to	operate,	courts	administered	Roman	law,	Roman	and	Gothic
landholders	were	paying	their	taxes,	and	learning	and	culture	had	not
disappeared.	The	Roman	Senate	was	still	meeting,	and	Boethius	became	a
Senator.	He	was	also	a	philosopher,	theologian,	poet,	mathematician,	and
astronomer—one	of	the	last	generation	to	study	at	what	was	still	calling	itself	the
Academy	in	Athens—and	he	was	deeply	troubled	to	see	his	contemporaries
losing	the	ability	to	read	Greek,	which	had	for	centuries	been	part	of	Roman
education.*	No	longer	could	they	experience	Plato,	Aristotle,	the	neo-Platonists,
or	many	of	the	Christian	church	fathers	in	their	original	language.	Boethius
vowed	to	remedy	this	potentially	disastrous	loss:	“I	will	translate	into	Latin
every	work	of	Aristotle	that	comes	into	my	hands,	and	all	the	dialogues	of
Plato.”18	Much	else	also,	it	turned	out.

Boethius	accomplished	an	astounding	amount	of	translation	before	he	made
an	unfortunate	career	decision.	Rome	was	far	from	a	dead	city,	but	it	was	no
longer	the	city	from	which	Italy	was	ruled.	The	Ostrogoth	leader	Theodoric,	in
Ravenna,	had	taken	over	from	the	Visigoths	in	493,	when	Boethius	was	thirteen,
murdering	(some	said	personally)	the	king,	Odoacer,	whom	the	German	army
had	elected.	Having	grown	up	in	Constantinople	and	married	a	Byzantine
princess,	Theodoric	admired	classical	culture	and	liked	to	surround	himself	with
intellectuals.	Boethius	was	particularly	attracted	to	him	because	Theodoric
hoped	to	reconcile	the	Romans	and	the	Goths,	and	that	shared	goal	also	drew
Theodoric	to	Boethius.	Boethius	decided	to	attach	himself	to	Theodoric’s	court
in	Ravenna.

He	did	not	last	long	there.	In	523,	he	was	falsely	accused	of	treason	and	the
use	of	magic.	Theodoric	imprisoned	him	and	executed	him	the	next	year,	but	not
before	Boethius	in	his	prison	cell	had	done	his	deepest	thinking	and	most
eloquent	writing—a	book	redolent	of	Platonic	ideas,	called	Consolations	of
Philosophy.	Throughout	the	Middle	Ages,	Boethius	was	considered	on	the	level
of	one	of	the	church	fathers,	if	not	exactly	one	of	them,	but	in	this	book	he	wrote
not	of	the	Christian	command,	but	of	the	Pythagorean	command,	to	“follow
God.”



Boethius,	probably	a	late	medieval	representation

For	centuries,	medieval	scholars	in	Latin	Europe	would	know	the	Greek
authors	through	the	Latin	translations	and	commentaries	Boethius	had	written.	In
large	part	thanks	to	him	and	Macrobius,	the	flame	of	classical	Greek	philosophy
was	kept	burning	in	the	monasteries	of	the	Middle	Ages.	Also	because	of
Boethius,	Nicomachus’	version	of	neo-Pythagorean	mathematics	became	the
bane	of	every	student’s	existence.

The	impact	in	the	Middle	Ages	of	another	of	Boethius’	books,	a
multivolume	work	called	De	institutione	musica,	was	almost	as	great	as	that	of
his	De	institutione	arithmetic,	which	preserved	Nicomachus’	mathematics.
Islamic	philosophers	would	refer	to	it	when	they	wrote	about	music	from	a
Pythagorean	point	of	view,	and	it	would	become	a	staple	when	medieval
educators	adopted	the	Pythagorean	quadrivium.	The	first	three	volumes	of	De
institutione	musica	were	probably	a	translation	or	close	paraphrase	of
Nicomachus’	Introduction	to	Music,	since	lost.	The	approach	was	Pythagorean,
emphasizing	the	importance	of	the	musical	ratios,	linking	specific	notes	of	the



scale	to	the	Sun,	Moon,	and	planets,	and	referring	frequently	to	Pythagoras.
Boethius	divided	“music”	into	three	subjects:	musica	mundana	was	the	harmony
of	the	spheres,	musica	humana	the	relationship	of	music	to	the	human	soul,	and
musica	instrumentalis	what	we	normally	think	of	as	music.

In	the	sixth	century,	the	old	Roman	Empire	in	the	East	had	a	new	name,	the
Byzantine	Empire,	and	was	still	alive	and	flourishing	brilliantly.	Greco-Roman
civilization	had	certainly	not	died	there.	Alexandria	was	a	wealthy,	thriving	city,
as	were	Jerusalem	and	Antioch;	Constantinople	had	replaced	Rome	as	the	capital
of	the	civilized	world,	and	its	emperor	was	for	all	intents	and	purposes	the	head
of	the	Christian	church.	Before	mid-century,	the	Byzantine	general	Belisarius
drove	the	Vandals	out	of	North	Africa,	conquered	the	southern	part	of	Spain,	and
retook	Rome.	The	Byzantine	Empire	soon	held	Ravenna—ending	Theodoric’s
brief	golden	age	there—as	well	as	Genoa,	most	of	Sicily,	and	southern	Italy,
including	Calabria	(the	old	Magna	Graecia)	which	would	not	be	lost	until	the
middle	of	the	eleventh	century.	However,	the	reconquest	of	Italy,	rather	than
restoring	prosperity	there,	destroyed	what	little	was	left.	It	was	in	the	Near	and
Middle	East	and	North	Africa	that	the	old	traditions	of	teaching	and	learning
continued,	and	where	Christian	scholars	were	carefully	preserving	ancient	texts
and	knowledge	of	the	ancient	Greek	language.

The	preservation	and	treasuring	of	classical	philosophy	and	learning	would
continue	in	those	regions	for	many	centuries,	but	not	under	the	aegis	of	the
Christian	Byzantine	Empire.	In	the	seventh	century,	followers	of	Mohammed
poured	out	of	the	east.	In	Syria	and	Egypt	there	was	scarce	resistance,	and	the
great	cities	surrendered	quickly	with	little	damage	when	the	conquerors	assured
the	Jewish	and	Christian	populations	that	they	could	continue	as	usual	with	their
beliefs	and	worship.	This	was	fortunate	for	still-existing	ancient	texts,	which
came	into	Islamic	hands	and	were	regarded	as	a	precious	heritage.	By	718,	the
Arabs	held	all	of	Spain,	where	they	would	continue	as	a	small	but	powerful	elite,
ruling	in	a	manner	that	was	astoundingly	tolerant	in	religious	matters	and	open
to	cultural	influences	from	all	over	the	Mediterranean	and	Islamic	world.

In	the	monasteries	of	Christian	Latin	Europe,	scholars	eked	out	a	meager
intellectual	living	on	the	works	of	Macrobius	and	Boethius	and	a	few	other
classical	Latin	authors,	copying	and	preserving	them	with	excruciating	care,
occasionally	hearing	and	hardly	believing	rumors	that	the	lost	literary	and
philosophical	treasures	of	Greece	and	Rome	still	existed	in	a	far-off	place.	But	it
was	under	the	rule	of	Islam	in	the	Middle	East,	North	Africa,	and	Moorish	Spain
that	most	of	the	preservation	of	ancient	knowledge	and	writings,	and	the
development	of	newer	mathematics	and	astronomy	based	on	them,	moved



forward	from	the	eighth	century	to	the	eleventh.



PART	III

Eighth–Twenty-first	Centuries	A.D.



CHAPTER	14

“Dwarfs	on	the	shoulders	of	giants”:	Pythagoras	in	the	Middle
Ages

Eighth–Fourteenth	Centuries

BY	THE	EIGHTH	CENTURY,	THE	book	destined	to	be	Ptolemy’s	most	celebrated
work	had	reached	Baghdad.	Islamic	scholars	translated	it	into	Arabic,	and
Almagest,	“The	Greatest,”	was	its	ninth-century	Arabic	title.	While	Islamic
mathematicians	and	astronomers	were	advancing	beyond	the	methods	and
models	of	Hellenistic	scholars,	no	one	apparently	questioned	the	Earth-centered
model	of	the	cosmos	or	seems	to	have	been	aware	of	Philolaus’	Pythagorean	ten-
body	model	with	the	central	fire	and	counter-earth.	Al	Fargani,	a	brilliant	ninth-
century	Arab	astronomer,	estimated	the	sizes	of	the	spheres	in	which	the	planets
move	and	worked	out	relationships	among	their	distances,	but	musical	ratios
were	not	part	of	his	calculations	or	those	of	other	Islamic	astronomers.	Those
with	an	ear	for	Pythagorean	harmony	of	the	spheres	in	the	Islamic	world	were
men	concerned	with	the	effects	of	instrumental	and	vocal	music	on	the	health	of
the	body	and	the	well-being	and	morality	of	the	human	soul.	They	were
following	the	lead	of	a	ninth-century	writer	named	Honein	Ibn	Ishak	al-‘Ibadi,	or
Hunayn.1

The	mission	of	the	Bayt	al-hikma,	or	House	of	Learning,	an	academy	in
ninth-century	Baghdad,	was	to	retrieve	the	knowledge	of	antiquity	and	make	it
available	to	readers	in	Arabic.	Baghdad	was	a	cosmopolitan	city	where	ideas
flowed	freely	and	minority	religions	were	regarded	as	no	serious	threat.	Hunayn,
though	not	a	Muslim	but	a	Nestorian	Christian,	was	both	a	member	of	this
academy	and	the	chief	court	physician	to	the	caliph.*

Hunayn’s	fluent	Greek	made	him	useful	for	more	than	his	medical	expertise.
He	translated	books	from	Greek	into	Arabic	for	Islamic	patrons	and	into	Syriac
for	Christians,	and	he	also	produced	Arabic	translations	of	the	works	of	his
ancient	medical	predecessor	Galen,	and	of	the	Hebrew	Scriptures	(from	a	Greek
version).

Curious	about	the	way	music	affects	the	human	body	and	psyche,	Hunayn
wrote	the	first	known	treatise	on	music	in	Islamic	literature,	full	of
Pythagorean/Platonic	themes	of	unity,	harmony,	Forms,	the	estrangement	of	the



soul	from	the	divine,	and	the	possibility	of	their	eventual	reunion.	“Living	in
solitude,	the	soul	sings	plaintive	melodies,	whereby	it	reminds	itself	of	its	own
superior	world,”	he	wrote,	and	described	how	life	often	works	to	seduce	the	soul
away	from	this	superior	world.	For	him,	music,	rather	than	numbers,	was	the
great	underlying	connector:	“The	excellence	of	music	is	evident	by	the	fact	that
it	appertains	to	every	profession,	like	a	man	of	understanding	who	associates
himself	with	everybody.”	Hunayn	compiled	a	collection	of	aphorisms,
anecdotes,	letters,	and	excerpts	from	a	variety	of	Greek	sources	that	he	titled
Maxims	of	the	Philosophers	(Nawadir	al-falasifa).2	He	took	these	from
compilers	like	Plutarch,	not	from	the	originals,	but	the	excerpts	frequently	began
with	“Plato	used	to	say,”	or	“Aristotle	said,”	or	“Alexander	asked	Aristotle,”
invoking	Archytas	and	Euclid	as	well.	Numbers	were	involved	in	some	of	the
excerpts,	but	no	real	mathematics.†

Hunayn	had	a	sense	of	humor:

Once	a	philosopher	went	out	for	a	walk	accompanied	by	his
disciple.	They	heard	a	voice	and	a	guitar.	The	philosopher	said	to
his	disciple:	“Let	us	approach	the	guitar;	perhaps	we	can	learn
some	sublime	Form.”	But	as	they	came	closer	to	the	guitar,	they
heard	a	bad	tone	and	an	inartistic	song.	The	philosopher	then	said
to	his	disciple:	“The	magicians	and	astrologers	assert	that	the
voice	of	an	owl	indicates	death	for	man.	Were	this	true,	the	voice
of	this	man	should	indicate	death	for	an	owl.”3

Some	of	Hunayn’s	collected	aphorisms	were	later	incorporated	into	a
mammoth	Islamic	encyclopedia	that	appeared	about	a	hundred	years	after	his
own	lifetime,	produced	by	a	tenth-century	community	known	as	the	Ikhwan	al-
Safa’,	or	Brethren	of	Purity,	in	Basra	in	southeastern	Iraq.	Like	the	scholars	of
Hunayn’s	House	of	Learning,	the	Brethren	attempted	to	preserve	all	they	could
of	the	ancient	scientific	and	philosophical	material	that	had	come	into	Islamic
hands.	Their	chief	undertaking	was	an	encyclopedia	called	the	Rasa’il,	in	fifty-
two	volumes.	Its	purpose	was	to	cover	human	knowledge	in	its	entirety.	Some
ancient	books	were	paraphrased,	but	few	passages	were	taken	verbatim	in
translation.	Instead,	the	Rasa’il	was	an	extravagant	re-envisioning	of	earlier
doctrines,	an	example	of	a	second	phase	of	the	work	to	which	so	many	Islamic
scholars	were	devoted.	One	of	the	greatest,	Al-Kindi,	described	it	as	striving	to
“complete	what	the	ancients	have	not	fully	expressed,	and	this	according	to	the
usage	of	our	Arabic	language,	the	customs	of	our	age,	and	our	own	ability.”4



The	Brethren	of	Purity	viewed	all	knowledge	as	a	continuum	of	revelation
taking	place	in	all	times	and	places	and	among	all	races	and	religions.
Pythagoras,	Plato,	Abraham,	Jesus,	Mohammed,	and	the	imams	who	succeeded
Mohammed	were	all	part	of	it.	The	Brethren	put	together	a	cosmology	of	their
own	having	many	interlinked	levels	of	being,	with	“One	God”	whose	holiness
lived	in	all	things.	The	highest	destiny	of	a	human	was	to	rejoin	his	or	her	inner
holiness	to	this	One	God.	The	Rasa’il	wove	together	many	aspects	of	the	world
—music,	numbers,	medicine,	theology,	astronomy,	and	other	areas.	The
interlinking	was	based	in	a	precise	manner	on	numbers	and	music	and	conjured
up	a	“unity,”	not	as	the	Pythagoreans	had	done	it	but	very	much	in	the
Pythagorean	spirit	and	with	them	in	mind.	Referring	to	ancient	“musician-
philosophers”	who	had	drawn	a	connection	between	the	four	elements—fire,	air,
water,	and	earth—the	Brethren	linked	these	with	human	health,	the	arrangement
of	the	cosmos,	and	the	four	strings	of	an	instrument	called	the	oud:

This	we	have	expounded	in	the	treatise	on	arithmetic.	In	effect,
the	first	string	is	comparable	to	the	element	of	fire,	and	its
sonority	corresponds	to	the	heat	and	its	intensity.	The	second
string	is	comparable	to	the	element	of	air	and	its	sonority
corresponds	to	the	softness	of	air	and	its	gentleness.	The	third
string	is	comparable	to	the	element	of	water	and	its	freshness.	The
fourth	string	is	comparable	to	the	element	of	earth	and	its	sonority
corresponds	to	the	heaviness	of	earth	and	its	density.5

The	link	with	the	human	body	and	physical	and	mental	health,	echoing
Hunayn,	had	the	sounds	of	the	different	strings	producing	different	effects	in
those	who	heard	them:	“The	sonority	of	the	first	string	reinforces	the	humor	of
yellow	bile,	augments	its	vigor	and	its	effect;	it	possesses	a	nature	opposed	to
that	of	the	humor	of	phlegm,”	and	so	forth.6	Unlike	Hunayn,	however,	the
Brethren	included	specific	mathematics.	In	their	arrangement	of	the	cosmos,
each	of	the	four	elements,	plus	something	called	frigidity,	predominated	in	one
of	a	set	of	nested	spheres	with	the	Earth	in	the	center.	The	size	of	each	sphere,	in
relation	to	the	next,	was	in	the	ratio	of	4:3.	Beyond	the	orbit	of	the	Moon	there
was	a	“harmonious	proportion	that	exists	between	the	diameters	of	the	spheres	in
which	the	planets	move	and	those	of	earth	and	air.”7

The	Ikhwan	al-Safa’	or	Brethren	of	Purity	arrangement	of	the	cosmos
beneath	the	orbit	of	the	Moon.	This	drawing	shows	the	spheres,	but	not	the



exact	proportions.

The	Brethren	made	connections	among	the	cube,	the	notes	of	the	strings	on
the	oud,	and	the	relationships	between	the	notes:	The	ancients,	they	said—
continuing	their	reinterpretation	of	Pythagorean	thinking	and	working	Euclid
into	it	as	well—had	a	preference	for	the	octave,	because	8	was	the	first	cube
number	(2	×	2	×	2).	A	cube	has	six	sides	and	6	is	a	perfect	number.*	All	of	a
cube’s	sides	are	equal	and	all	of	its	angles	are	equal,	and

we	have	said	that	the	more	the	created	thing	possesses	the
property	of	equality,	the	greater	its	eminence.	It	is	for	this	reason
that	it	was	said	in	Euclid’s	last	treatise	that	the	form	of	the	earth	is
probably	cubic	and	that	of	the	celestial	sphere	probably	a
dodecahedron	defined	by	twelve	pentagons.8

The	preference	for	“equality”	calls	to	mind	Archytas.
Also	in	the	tenth	century,	when	the	Brethren	of	Purity	were	compiling	their

encyclopedia,	a	Shiite	katib	(secretary)	in	Syria	wrote	a	treatise	in	the	same
tradition.	What	seemed	most	significant	to	Al-Hasan	al-Katib	was	the
Pythagorean	insight	that	numbers	and	the	relationships	between	them	were	the
key	to	human	understanding	of	the	universe.	He	reformulated	this	doctrine	and
applied	it	both	to	the	human	body	and	soul	and	to	the	cosmos:	Three	was	the
number	of	the	simple	consonances	in	music	(fourth,	fifth,	octave)	and	also	the
number	of	the	divisions	of	the	soul	(rational,	sensible	or	sensitive,	and	natural	or
vegetative).	Seven	was	the	number	of	notes	in	the	scale	short	of	the	octave	and



seven	was	also	the	number	of	elements	of	the	rational	soul:	comprehension,
intelligence,	memory,	deliberation,	estimation,	syllogism,	knowledge.	Different
modes	in	music	were	equivalent	to	different	virtues	of	the	soul:	justice—the
mode	of	the	index	finger	on	the	second	string;	good	understanding—the	mode	of
the	open	third	string;	purity—the	middle	finger	on	the	third	string;	and	so	forth.
In	Al-Hasan’s	scheme,	the	movements	and	positions	of	the	celestial	spheres	also
had	their	equivalents	in	music,	and	the	origin	of	the	zodiac	could	be	explained	in
similar	terms.	He	wrote	that	he	was	indebted	to	Nicomachus	of	Gerasa	for	these
ideas.

The	sphere	of	the	Zodiac	is	divided	into	twelve	parts	which
represent	the	houses	of	the	Zodiac.	We	believe	that	this	division
was	established	[or	defined]	thus	because	the	number	12	is
divisible	into	halves,	thirds,	and	quarters.	These	are	the	elements
which	are	found	in	the	division	of	the	complete	system,	because
the	last	note	of	the	octave	is	half	the	first	(2:1),	the	note	of	the
fifth	is	in	the	ratio	of	one	and	a	half	to	it	(3:2),	the	note	of	the
fourth	is	in	the	ratio	of	one	and	a	third	to	it	(4:3).9

IN	THE	PARTS	of	Europe	not	under	Islamic	rule,	populations	in	different	areas
spoke	a	great	variety	of	vernacular	languages	and	dialects,	but	Latin	was	the
lingua	franca	that	united	scholars,	who	were	almost	without	exception	the	only
people	who	could	read.	As	Boethius	had	feared,	Greek	had	disappeared	almost
entirely.	Little	remained	in	Europe	to	be	read	in	Greek	anyway,	since	Greek
manuscripts	that	at	first	had	been	preserved	by	Christians	were	now	nearly	all	far
away	in	Islamic	lands.

However,	Latin	Europe	did	not	languish	in	total	intellectual	darkness.	Even
in	the	ninth	and	tenth	centuries,	when	Viking,	Magyar,	and	Saracen	invasions
repeatedly	wreaked	havoc,	scholars	were	carrying	forward	Pythagorean/Platonic
ideas	about	numbers	and	music.	Taking	them	in	a	different	direction	from	their
Islamic	contemporaries,	they	explored	the	links	between	music	and	astronomy
and	inventively	manipulated	the	numbers	and	mathematics	of	music	and	the
cosmos.

Aurelian	of	Réôme	(now	Moutiers-Saint-Jean)	was	a	contemporary	of
Hunayn;	most	of	his	writing	dates	from	the	decade	840	to	850.10	The	earliest
medieval	music	treatise	that	has	survived	was	his	Musica	disciplina,	based	in
part	on	Boethius.	Aurelian	did	know	Greek	and	some	astronomy	and	was
knowledgeable	about	the	movements	of	the	planets	and	their	periods.*	He



observed	that	the	eight	musical	modes	seemed	to	copy	eight	kinds	of	celestial
motion.	He	wrote	of	instances	when	angelic	music	was	audible	on	Earth,	and
about	the	Muses	and	the	zodiac,	though	he	had	to	be	inventive	to	link	eight
musical	modes	with	nine	Muses.	Aurelian	followed	the	Pythagorean	lead	in
more	ways	than	his	interest	in	the	harmony	of	the	spheres:	He	knew	of	the
quadrivium	that	Plato	learned	from	Archytas,	and	he	was	convinced	that	the
truth	of	the	universe	lay	in	numbers.

The	motions	of	the	stars	are	eight,	seven	of	the	planets	and	one	of
that	which	is	called	the	Zodiac	[the	sphere	of	fixed	stars],	which	all
say	make	the	sweetest	harmony	of	song;	that	is,	consonance.	Even
the	Lord,	in	the	reply	that	he	made	out	of	the	whirlwind	to	Holy
Job,	called	this	the	harmony	of	heaven.[*]

There	are	other	things	that	writers	about	this	art	have
discovered.	They	say	that	the	whole	theory	of	the	art	of	music
consists	of	numbers.

The	natural	discipline	is	given	over	to	four	sciences,	namely,
arithmetic,	geometry,	music,	and	astronomy.	In	these,	numbers,
the	measurements	of	the	earth,	sounds,	and	the	positions	of	the
stars	are	examined;	but	their	essence	and	their	whole	origin	is	in
mathematics.11

John	Scotus	Eriugena	also	lived	in	the	ninth	century,	at	about	the	same	time
as	Hunayn	and	Aurelian.12	Nothing	is	known	about	his	early	life,	though	his
name	must	indicate	he	was	from	Ireland	(“Eriugena”	can	be	translated	as	“Erin
born”),	which	escaped	the	barbarian	invasions	overrunning	most	of	Europe	until
the	Danes	arrived	later	in	the	century.	Eriugena	may	have	started	out	as	a	scholar
connected	with	one	of	the	great	Irish	monasteries,	but	when	he	was	in	his
thirties,	Charles	the	Bald	invited	him	to	France	to	be	head	of	his	court	school.	He
is	also	thought	to	have	traveled	to	Greece	and	Italy,	studied	Greek,	Arabic,	and
Chaldean,	later	moved	to	Oxford	at	the	invitation	of	Alfred	the	Great	of
England,	and	finally	taught	at	the	Abbey	of	Malmesbury.	Eriugena	was	the
scholar	who	translated	the	works	of	“pseudo-Dionysius”	into	Latin.

The	idiosyncratic	cosmological	scheme	that	Eriugena	developed	made	him
one	of	the	most	remarkable	scholars	of	his	era—in	fact,	of	all	who	predated
Latin	Europe’s	tenth–twelfth	century	rediscovery	of	the	classical	literature.	In
his	cosmos,	the	stars,	Moon,	Sun,	and	Saturn	orbited	the	Earth,	but	Mercury,
Venus,	Mars,	and	Jupiter	orbited	the	Sun.	This	arrangement	was	not	at	all



harebrained;	in	fact,	it	was	an	insightful	step	in	the	direction	of	Copernican
astronomy.	However,	it	presented	a	challenge	to	the	harmony	of	the	spheres.	In
Eriugena’s	cosmos,	the	four	planets	with	Sun-centered	orbits	were	of	course
continually	changing	their	distances	from	Earth.	A	change	of	distance	meant	a
change	in	the	musical	pitch	of	a	planet,	and	so	a	theory	of	cosmic	harmony	had
to	allow	for	varying	pitch.	That	was	an	idea	that	no	one	but	Eriugena	would
explore	until	Giorgio	Anselmi	in	the	early	fifteenth	century	and	Johannes	Kepler
in	the	late	sixteenth	and	early	seventeenth—Kepler,	at	last,	with	a	correct
understanding	of	the	solar	system	and	much	more	fruitful	results.

Eriugena	worked	out	the	problem	of	the	varying	pitches	of	the	heavenly
bodies	in	his	own	way	in	an	elaborate	system	involving	numbers,	ratios,	and
musical	intervals,	drawing	examples	from	organ	pipes	and	stringed	instruments:
“Here	one	must	admire	the	wonderful	virtue	of	Nature;	for	what	anyone	can
accomplish	on	a	four-stringed	lyre	is	achieved	in	the	eight	celestial	sounds.	But
the	method	by	which	it	is	done	must	be	sought	out	with	diligent	investigation.”13

He	explained	some	of	the	results	of	this	investigation	in	language	that	he
tried	to	make	reader-friendly:

As	you	see,	the	sounds	do	not	always	relate	by	the	same	intervals,
but	according	to	the	altitude	of	their	orbits.	No	wonder,	then,	that
the	Sun	sounds	an	octave	with	Saturn	when	it	is	running	at	the
greatest	distance	from	it,	but	when	it	begins	to	approach	it,	it	will
sound	a	fifth	and	when	it	gets	closest,	a	fourth.	Considered	in	this
manner,	I	think	it	will	not	disturb	you	when	we	say	that	Mars	is
distant	from	the	Sun	sometimes	by	a	tone,	sometimes	by	a
semitone.14

Eriugena	also	urged	his	readers	to	keep	in	mind	that	when	comparing	the
distances	of	planets,	one	was	talking	about	the	ratios	and	relationships	of	the
distances	between	the	planets,	not	the	absolute	distances	in	stadia	(or,	in	modern
terms,	in	miles	or	parsecs).

He	had	his	own	take	on	the	agreement	between	neo-
Pythagoreanism/Platonism	and	Christianity:	Everything	in	creation	derived	from
the	One,	and	the	One	was	the	same	thing	as	God.	From	this	One,	who	was
universal,	all-containing,	infinite,	and	incomprehensible,	emanated	the	realm	of
Plato’s	Forms.	Under	the	influence	of	the	Holy	Spirit,	the	Forms	manifested
themselves	in	created	things.	All	creatures	would	eventually	be	drawn	back	to
reunion	with	the	divine	level	of	being	from	which	they	had	fallen.	God	was	both



“the	source	of	all	things	and	the	final	end	of	all	things.”
For	Eriugena,	all	was	“fairest	harmony,”	including	not	only	the	heavenly

spheres	but	“even	the	sounds	that	will	arise	from	the	punishment	of	evil,	for
punishments	are	good	when	they	are	just,	and	so	are	rewards	when	they	are	more
in	the	nature	of	gifts	than	payments	for	what	is	earned.”	The	result	of
punishment	and	reward	would	be	a	final	purification	and	redemption,	even	of
animals	and	devils,	and	reunification	into	the	divine	One,	with	full	knowledge	of
God,	seen	“face	to	face,”	as	St.	Paul	had	written.	For	Eriugena,	the	great
harmony	of	creation	was	a	“combination	of	low,	high,	and	intermediate	sounds
making	a	certain	symphony	between	them	through	their	proportions	and
proportionalities.”15

A	younger	contemporary	of	Aurelian	and	John	Scotus	Eriugena,	Regino	of
Prüm,	referred	to	the	Pythagoreans	in	the	introduction	to	a	book	he	wrote	about
the	plainsong	melodies	used	in	Trier,	his	native	town.	Claiming	that	he	got	his
information	from	Boethius’	De	musica,	he	offered	what	he	believed	was	the
Pythagorean	argument	for	the	existence	of	heavenly	music.*

The	Pythagoreans	argue	the	presence	of	music	in	the	heavenly
motions	thus:	how,	they	say,	could	the	heavenly	apparatus,	so
rapid	in	its	course,	move	in	silence?	Even	though	it	does	not
reach	our	ears,	it	is	still	quite	impossible	that	such	headlong	speed
should	lack	sound,	especially	since	the	course	of	the	stars	are
arranged	in	so	convenient	and	well-adapted	a	way	that	nothing	so
enmeshed	and	conjoined	can	be	imagined.	Some	are	higher,
others	lower,	yet	all	are	turned	with	an	equal	impulse	so	that	their
unequal	and	disparate	orbits	fall	into	a	determined	order.	From
this	it	is	argued	that	there	is	a	harmonious	arrangement	in	the
heavenly	motion.16

The	more	important	issue	for	Regino	was	not	whether	the	heavenly	motions
produced	a	sound	but	whether	they	took	place	in	a	“harmonious	arrangement.”
For	him,	“harmony”	was	a	beautiful	scheme	of	numbers	and	number
relationships	pervading	the	universe,	underlying	both	music	and	the	arrangement
and	movements	of	the	planets	and	stars.

Regino	was	a	musician,	not	an	astronomer,	but	before	moving	on	from	the
introduction	of	his	book	to	its	main	subject	matter—plainsong—he	wrote	a
paragraph	that	sounded	like	Archytas’	idea	about	the	connection	between	pitch
and	fast	and	slow	motion	and	the	beating	of	the	air,	described	the	connections



between	the	planets	and	strings	or	cords	on	a	lyre,	and	paid	tribute	to	Cicero’s
“Dream	of	Scipio.”	To	cover	all	bases,	Regino	closed	his	introduction	with	the
words	“We	would	just	add	that	not	only	the	heathen	philosophers	but	also
vigorous	commenders	of	the	Christian	faith	give	their	assent	to	this	heavenly
harmony.”17

IN	THE	ELEVENTH	century,	a	Europe	that	had	been	relentlessly	tormented	for	two
hundred	years	by	waves	of	marauding	invaders	experienced	an	era	of	relative
peace	and	optimism.	The	pace	of	life	quickened,	and	populations	and	trade
increased,	including	trade	with	regions	under	Islamic	rule.

Teaching	and	study	in	Europe	during	the	centuries	of	upheaval	had	never
come	to	a	halt,	and	monks	had	gone	on	preserving	ancient	writings	and	copying
and	illuminating	manuscripts.	However,	in	the	eleventh	century	new	centers	of
learning	started	to	appear	not	in	the	monasteries	but	in	the	cathedral	precincts
and	in	the	larger	medieval	cities.18	At	first,	these	amounted	to	no	more	than	one
or	a	few	learned	men	with	a	huddle	of	students	gathered	around	them,	and	most
of	the	teaching	was	oral.	In	the	twelfth	and	thirteenth	centuries,	these	groups
became	formalized,	with	better	defined	roles	and	obligations	for	students	and
teachers,	better	established	relations	with	local	populations	and	governments
(often	a	touchy	matter),	and	student	lodgings	resembling	the	colleges	of
Cambridge	and	Oxford.	Universities	on	this	model	were	an	authentically
European	development.

Among	the	earlier	gatherings	of	teachers	and	scholars,	and	later	in	the
universities,	a	critical	and	discursive	(“combative,”	Thomas	Kuhn	called	it)
tradition	emerged	that	became	known	as	scholasticism.	Many	giants	of	medieval
thought	who	engaged	in	these	combats	are	still	familiar	names	today—Thomas
Aquinas,	Peter	Abelard,	Anselm	of	Canterbury,	to	name	only	a	few.	A	primary
goal	of	scholasticism	was	to	integrate	classical	Greek	ideas	and	learning	with
Christian	belief.	With	the	reintroduction	to	Latin	Europe	of	the	works	of
Aristotle,	translated	into	Latin	in	the	twelfth	century	but	not	immediately
available	to	all	scholars,	this	became	a	much	greater	and	more	complicated
undertaking.	Scripture	was	given	a	more	metaphorical,	less	literal	reading,	and
Aristotle	came	to	be	considered,	after	Scripture,	the	supreme	authority.	Scholars
revered	him	not	just	as	a	philosopher,	but	as	“the	Philosopher,”	no	other
identification	required.

The	groundwork	for	the	rediscovery	of	classical	literature	had	been	laid	in
the	tenth	century,	when	Christian	knights	gradually	began	to	take	over	what	is
now	Spain	and	Portugal	from	the	Muslims	who	had	ruled	there	for	more	than
three	hundred	years.	The	culture	of	the	Iberian	peninsula	was	one	of	the	highest



three	hundred	years.	The	culture	of	the	Iberian	peninsula	was	one	of	the	highest
on	Earth,	the	best	of	both	Jewish	and	Muslim.	Because	the	population	of
Christian	Europe—from	which	the	conquering	knights	came—was,	on	the
whole,	much	rougher	and	less	civilized	and	literate,	the	situation	somewhat
resembled	the	Roman	conquest	of	the	Greeks	many	centuries	before.	This	newer
“conquest”	was	glacially	slow,	allowing	time	for	a	remarkable	intermingling	of
the	three	different	faiths	and	cultures.	Eventually,	in	1492,	the	Christians	would
drive	the	Muslims	out	of	Spain,	but	for	centuries	before	that	the	Christians	who
came	there	found	themselves	in	the	presence	of,	and	mingling	with,	a	long-
established,	intellectually	confident,	highly	cultivated	Muslim	and	Jewish
society.

Clergy	who	accompanied	or	followed	the	knights	were	awed	by	the	beauty
of	the	cities,	the	architecture	and	gardens,	the	peace	in	which	minority
communities	coexisted,	and	the	level	of	learned	discussion	and	scholarship—but
most	of	all	by	the	libraries	of	Cordoba,	Toledo,	Segovia,	and	Lisbon.	As	long	as
any	cleric	in	Latin	Europe	could	remember,	there	had	been	rumors	that	priceless
manuscripts	and	books,	containing	the	lost	knowledge	of	the	ancients,	still
existed	somewhere	in	the	Muslim	countries.	The	old	rumors	turned	out	to	be	true
to	a	degree	beyond	their	dreams.	Here	in	Spain	was	the	fabled	material—much
of	it	translated	into	Arabic—that	had	been	in	the	repositories	of	Christian
scholars	before	the	Muslims	had	taken	over	most	of	the	former	Roman	Empire
in	the	seventh	century.	Since	then,	Muslim	and	Jewish	translators	and	scholars
had	treasured	and	preserved	these	works.

By	1100,	Christians	controlled	Toledo	and	Lisbon.	Archbishop	Raymund	of
Toledo	invited	the	cream	of	the	scholarly	world	to	join	in	an	effort	to	translate	a
vast	collection	of	ancient	writings	into	Latin.	The	first	translators	were
representatives	of	the	three	faiths,	Christian,	Jewish,	and	Muslim,	who	were
already	living	in	Spain,	but	soon	scholars	joined	them	from	all	over—Christian
clergy	from	Latin	Europe	and	England,	Jews	and	Muslims,	Latin,	Greek,	and
Slavic	scholars—to	work	with	no	censorship,	no	banning	of	any	book,	no
rewording	to	give	a	Christian	spin	to	pagan	words.	Some	of	the	translators	were
not	just	bilingual	but	multilingual.	Michael	Scot,	from	England,	knew	some
Arabic	and	was	fluent	in	Latin,	Greek,	Hebrew,	Syriac,	Chaldean,	and	several
other	languages.	When	not	enough	men	could	be	found	who	had	mastered	both
Arabic	and	Latin,	two	translators	with	a	common	language	worked	together.	The
effort	continued	for	years.	One	particularly	prolific	translator,	Gerard	of
Cremona,	translated	seventy	or	eighty	books	in	all,	including	Ptolemy’s
Almagest	and	Euclid’s	Elements.19



Similar	work	was	going	on	in	Palermo,	Sicily,	under	the	patronage	of	the
Norman	King	Roger.	Known	for	an	opulent	court	befitting	an	Eastern	potentate,
Roger	considered	it	essential	to	surround	himself	with	intellectuals,	and	he	was
patron	to	a	number	of	them—Roman	Catholic,	Byzantine	Christian,	Jewish	and
Muslim	alike.	The	translation	in	Palermo	was	more	often	directly	from	ancient
Greek	manuscripts	into	Latin,	rather	than	via	Arabic	translations,	for	Sicily	in
the	time	of	Pythagoras	had	been	a	Greek	colony	and	had	retained	the	Greek
language	through	the	Roman	and	Byzantine	eras.	Roger’s	retinue	included	a
number	of	Greek-speaking	scholars.	Plato’s	Meno	and	Phaedo	were,	fittingly,
first	translated	into	Latin	there	on	the	island	where	one	of	the	earliest
Pythagorean	communities	had	existed	and	where	Plato	himself	had	dabbled	in
court	politics	and	almost	lost	his	life.

With	no	printing	presses	yet	in	existence,	copyists	devoted	long	hours	to
reproducing	the	translations.	The	dissemination	of	the	new	books	was	slow,	but
for	the	first	time	in	many	centuries,	scholars	in	Latin	Europe	were	reading	the
ancient	Greeks,	and	in	the	universities	Aristotle	joined	Plato.

The	basic	medieval	curriculum	had	begun	as	none	other	than	the
Pythagorean	quadrivium	of	Archytas,	and	students	also	had	to	master	dialectic,
as	Plato	had	required.	But	when	Aristotle’s	works	began	to	influence	university
education,	they	became	the	foundation	of	philosophical	and	theological	studies
in	a	“trivium”	that	followed	after	the	quadrivium.	The	seven	subjects	of	the
combined	quadrivium	and	trivium—arithmetic,	geometry,	music,	astronomy,
grammar,	rhetoric,	and	dialectic—became	known	as	the	Seven	Liberal	Arts.20

The	standard	arithmetic	text	was	the	old,	familiar	Introduction	to	Arithmetic
by	Nicomachus,	the	second-century	neo-Pythagorean	who	had	clung	doggedly	to
“Pythagorean	mathematics”	and	identified	himself	as	a	Pythagorean.	Boethius’
slightly	reworked	Latin	version	of	his	book	had	been	in	the	libraries	of	Latin
Europe	for	centuries.	Now,	thanks	to	the	translation	projects	in	Spain	and
Palermo,	scholars	and	students	were	able	to	circumvent	Boethius’	rewrite	and
read	Nicomachus	in	direct	translation	from	the	original.	Whichever	version	they
read—Boethius’	De	institutione	arithmetic	from	the	early	sixth	century,	or
Nicomachus’	original	Introduction	to	Arithmetic	from	the	second—they
encountered	Pythagoras	before	they	encountered	any	arithmetic,	for	the	opening
passages	lauded	him.	Medieval	students	thus	learned	their	arithmetic	in	the	neo-
Pythagorean	form,	which	they	took	to	be	the	form;	and	almost	entirely	through
this	one	book,	the	Pythagorean	faith	in	the	power	of	numbers	to	unlock	the
secrets	of	nature	and	the	universe	was	conveyed	to	the	Middle	Ages	and	beyond.
It	was	a	tremendously	significant	channeling	of	thought.	The	image	of



Pythagoras	as	the	creator	of	Greek	mathematics	became	entrenched.
In	the	twelfth	century,	in	many	universities,	the	geometry	section	of	the

quadrivium	was	taught	from	a	much	better	book,	Euclid’s	Elements.	Though
translated	into	Latin	earlier,	it	had	never	caught	on	or	become	widely	available.
Now	there	were	fresh	translations	from	the	Arabic	by	Gerard	of	Cremona	and
Abelard	of	Bath,	another	of	Archbishop	Raymund’s	translators.	Early	in	the
century,	Abelard	had	journeyed	the	whole	length	of	the	Mediterranean	collecting
ancient	texts.

In	the	third	section	of	the	quadrivium,	music,	Boethius’	De	institutione
musica	was	the	text.	Through	Boethius’	music	books,	again	probably	taken
originally	from	Nicomachus,	the	“Scale	of	Timaeus”	had	already	become	a
significant	part	of	medieval	music	theory.	There	is	good	evidence	that	this	scale
did	not,	in	fact,	originate	with	Plato	but	was	used	by	Philolaus	and	perhaps
earlier,	so	medieval	scholars	were	dealing	with	something	of	impressively
ancient	origin.21	They	accepted	Boethius’	divisions	of	music	into	musica
mundana	(harmony	of	the	spheres),	humana	(relationship	of	music	to	the	human
soul),	and	instrumentalis	(what	we	normally	think	of	as	music),	and	most	agreed
that	all	three	were	essential	parts	of	their	subject.

In	spite	of	a	few	doubters	such	as	the	Florentine	Coluccio	Salutati,	who
insisted	that	the	motions	of	the	heavenly	bodies	could	not	possibly	produce
sound,	the	idea	of	musica	mundana	was	still	favored	in	the	fifteenth	and
sixteenth	centuries	in	Italy,	when	Franchino	Gaffurio,	the	most	important	music
theorist	of	his	time,	made	every	attempt	to	be	a	true	Pythagorean.	He	refused	to
consider	any	but	the	intervals	approved	by	Boethius	as	consonant	intervals,
which	made	him	something	of	a	throwback.	Boethius	had	not	regarded	major
thirds	and	sixths	as	consonant,	and	musicians	among	Gaffurio’s	contemporaries
certainly	did.	Tradition	had	it	that	only	Pythagoras	himself	could	hear	the	music
of	the	spheres,	but	Gaffurio	amended	that	slightly	to	insist	that	only	men	of
significantly	great	virtue	could	hear	it.

As	for	the	fourth	part	of	the	quadrivium,	astronomy,	the	stationary-Earth-
centered	systems	of	Aristotle	and	Ptolemy	prevailed	unchallenged	and
unquestioned	until	one	tentatively	raised	hand	in	the	fourteenth	century.	It
belonged	to	a	Parisian,	Nicole	d’Oresme,	who	went	only	so	far	as	to	argue	that
Aristotle	had	fallen	short	of	proving	Earth	does	not	move.	Otherwise,	no	one
anywhere	in	the	Middle	Ages	and	until	the	fifteenth	century	took	seriously	the
Pythagorean	suggestion	mentioned	by	Philolaus	that	the	Earth	does	not	stand
still,	or	even	that	it	rotates.	When	a	more	aggressive	challenge	eventually	came,
in	the	fifteenth	century,	it	would	be	from	a	man	with	a	decidedly	Pythagorean



cast	of	mind:	Nicholas	of	Cusa.

THE	INFLUENCE	OF	Pythagoras	and	the	Pythagoreans	was	not	confined	to	the
universities	during	the	Middle	Ages.22	Freemasons	included	Pythagoras	among
their	ars	geometriae.	Gerbert	of	Aurillac,	who	became	Pope	Sylvester	II,	in	the
tenth	century	referred	to	Pythagoras	in	his	geometry.	Gobar	numerals—direct
ancestors	of	modern	Arabic	numerals—were	widely	believed	to	have	been	the
invention	of	Pythagoras.*	A	work	supposedly	(though	not	really)	by	Boethius
included	a	method	called	mensa	Pythagorea	for	calculating	with	these	numbers
on	an	abacus.23*	In	truth	they	were	originally	Hindu	and	were	transmitted	to	the
West	through	Islamic	countries	and	Spain,	with	Arabic	numerals	first	appearing
in	a	Latin	manuscript	in	976.24	For	Nicomachus,	the	neo-Pythagorean
numerology	in	his	book	had	been	even	more	significant	than	the	arithmetic,	and
this	numerology	too	continued	to	be	important	in	the	Middle	Ages,	for	had	not
even	St.	Augustine	himself	taken	enthusiastically	to	the	Pythagorean-like	idea	of
the	allegorical	interpretation	of	numbers	in	the	Bible?	Like	Philo	of	Alexandria,
Augustine	had	written	about	the	six	days	of	creation	in	the	Genesis	account	and
pointed	out	that	six	was	a	perfect	number.

Whoever	chose	what	to	celebrate	in	the	sculptures	adorning	the	doors	of	the
cathedral	at	Chartres,	one	of	the	architectural	wonders	of	the	Middle	Ages,
decided	to	include	a	series	of	statues	representing	the	Seven	Liberal	Arts	and
selected	Pythagoras	to	symbolize	music.	The	sculptor	made	him	long-haired	and
bearded,	hands	and	face	middle-aged	at	least,	seated	and	clothed	in	a	beautifully
adorned	robe	as	he	bent	intensely	over	his	work.	At	the	cathedral	school	in
Chartres,	in	the	twelfth	century,	the	scholastic	movement’s	long	endeavor	to
bring	together	Platonic	and	scriptural	narratives	and	concepts,	including	giving
the	Genesis	account	of	creation	a	more	Greek	(in	modern	terms	“scientific”)
interpretation,	reached	its	zenith.	John	of	Salisbury	called	Bernard	of	Chartres,
head	of	the	Chartres	school	in	the	first	part	of	the	century,	“the	finest	Platonist	of
his	time.”	The	Platonism	of	Bernard	and	his	fellows	was	based	mainly	on
Augustine	and	other	early	Christian	scholars,	the	writings	of	Boethius,
Macrobius’	commentary	on	Cicero’s	“Dream	of	Scipio,”	and	Plato’s	Timaeus	in
a	translation	by	Chalcidius.	The	Chartres	scholars	saw	Timaeus	as	an	explication
of	Genesis.	Bernard	had	Pythagoras	and	Plato	in	mind	when	he	praised	the
ancients	in	words	usually	attributed	to	Isaac	Newton	five	centuries	later:

We	are	dwarfs	perched	on	the	shoulders	of	giants.	Although	we
may	see	more	and	further	than	they,	it	is	not	because	our	sight	is



keener	or	our	stature	greater,	but	because	they	bear	us	up	and	add
their	gigantic	stature	to	our	height.25*

Pythagoras	depicted	in	a	frieze	of	the	Seven	Liberal	Arts	on	the	western	front	of	the	Cathédrale
Notre-Dame	de	Chartres

The	scholars	of	the	Chartres	school	were	addressing	an	old	question:	What
is	the	best	guide	on	the	journey	toward	God,	or	(if	one	wished	to	use	more
Pythagorean/Platonic	language)	toward	reunion	with	the	divine?	Was	it	“reason”
or	“faith”?	Is	it	not	best	that	the	two	work	together?	Boethius	had	written,	“As
far	as	you	are	able,	join	faith	to	reason,”	and	that	was	the	goal	of	the	scholastics.
The	hope	at	Chartres	was	to	stake	out	intellectual	and	spiritual	ground	where	one
could	accept	what	God	had	revealed	but	still	strive	for	more	comprehensive
knowledge	of	truth.	Faithful	to	their	Platonism,	and	also	to	their	Christianity	(St.
Paul	had	said	that	humans	could	only	see	“through	a	glass,	darkly”),	these
scholars	accepted	that	full	knowledge	could	not	be	had	in	this	life.	Nevertheless,
they	thought	it	essential,	insofar	as	humanly	possible,	not	only	to	believe	but
also	to	understand	what	one	was	believing.	Plato’s	Timaeus	seemed	a	splendid
example	of	this	effort	and	this	understanding,	albeit	from	a	pagan	philosopher.
Not	surprisingly,	these	ideas	offended	some	who	accused	the	Chartres	scholars
of	under-valuing	religious	revelation	and	mocking	simple	faith.26

The	masters	at	Chartres	influenced	thinkers	in	Paris	in	the	following
century,	when	scholarship	took	a	far	more	Aristotelian	turn,	prioritizing	sense
perceptions,	experience,	and	experiment	in	the	pursuit	of	knowledge.	The	church
continued	to	sound	much	more	like	Plato—for	whom	the	“Forms”	were	real	and



continued	to	sound	much	more	like	Plato—for	whom	the	“Forms”	were	real	and
the	sense-perceived	world	a	shifting	illusion—by	encouraging	rejection	of	the
perceptible,	sin-ridden	world.

Though	in	the	late	Middle	Ages	and	early	Renaissance,	scholastic	and
humanist	scholars	continued	to	have	success	meeting	the	challenges	of	new
translations,	broadening	knowledge	and	reconciling	Greco-Roman	and	Christian
thought,	even	as	late	as	the	seventeenth	and	eighteenth	centuries	sporadic
resistance	to	their	efforts	would	continue.	Some	still	pointed	to	doctrines	they
felt	had	entered	early	church	thinking	as	a	“pagan	corruption”	from	the
philosophy	of	Plato.	This	resistance	did	not	come	from	ignorant	people.	Isaac
Newton	dismissed	the	doctrine	of	the	Trinity	on	those	grounds.27	So	did	the	late
eighteenth	century	English	Unitarian	religious	dissenter	Joseph	Priestley,	who
thought	the	dualism	between	matter	and	spirit	was	not	inherent	in	the	Gospels
but	had	entered	the	early	church	through	Greek	philosophy.28



CHAPTER	15

“Wherein	Nature	shows	herself
most	excellent	and	complete”
Fourteenth–Sixteenth	Centuries

IN	THE	FOURTEENTH	CENTURY,	most	educated	people	in	Europe	regarded	foreign
languages	as	completely	impenetrable	and	unlearnable,	so	the	author	Francesco
Petrarca	(Petrarch)	was	being	venturesome	when	he	decided	to	learn	Greek.	He
engaged	a	teacher,	a	monk	named	Barlaam	of	Seminara,	but	the	project	was	not
a	success	and	Petrarch	was	fated	to	go	on	lamenting	that	he	would	never	arrive
at	the	best	understanding	of	philosophy	because	his	Greek	was	not	good	enough.

He	was	disarmingly	modest.	Perhaps	he	did,	as	he	claimed,	merely	chuckle
when	he	was	an	old	man	and	heard	the	news—it	was	being	repeated	all	over
Venice	and	beyond—that	four	young	aristocrats,	who	had	dined	and	drunk
exceedingly	well,	had	off-handedly	dismissed	him	as	“certainly	a	good	man	but
a	scholar	of	poor	merit.”	In	a	letter	written	just	a	few	years	before	that	Venetian
slight,	Petrarch	described	himself:

Let	me	tell	you,	my	friend,	how	far	I	fall	short	of	your	estimation.
This	is	not	my	opinion	only;	it	is	a	fact:	I	am	nothing	of	what	you
attribute	to	me.	What	am	I	then?	I	am	a	fellow	who	has	never	quit
school,	and	not	even	that,	but	a	backwoodsman	who	is	roaming
around	through	the	lofty	beech	trees	all	alone,	humming	to
himself	some	silly	little	tune,	and—the	very	peak	of	presumption
and	assurance—dipping	his	shaky	pen	into	his	inkstand	while
sitting	under	a	bitter	laurel	tree.	I	am	not	so	fortunate	in	what	I
achieve	as	I	am	passionate	in	my	work,	being	much	more	a	lover
of	learning	than	a	man	who	has	got	much	of	it.	I	am	striving	for
truth.	Truth	is	difficult	to	discover,	and,	being	the	most	humble
and	feeble	of	all	those	who	try	to	find	it,	I	lose	confidence	in
myself	often	enough.1

Some	of	the	“lofty	beech	trees”	among	whom	Petrarch	hummed	his	tune	were
Augustine	and	Cicero,	Aristotle	and	Plato	(he	read	them	in	Latin	translations),
and	Pythagoras,	whom	he	knew	through	those	other	authors.



and	Pythagoras,	whom	he	knew	through	those	other	authors.
Collecting	works	from	the	classical	period,	tracking	down	manuscripts	and

early	copies,	had	become	the	fashion	among	those	sufficiently	educated	and
wealthy,	and	the	acquisition	of	something	interesting	was	a	matter	of	great
excitement	to	share	with	like-minded	friends.	Petrarch’s	own	large	library
reflected	that	fashion	and	his	love	of	learning,	but,	for	all	his	modesty,	the
library	he	stored	in	his	head	was	vaster	than	most	men’s	collections.	He	read
more	than	anyone	else,	remembered	most	of	it	verbatim,	and	had	a	habit	of
imagining	himself	personally	involved	in	history	and	literature.	As	one
commentator	wrote,

Since	he	was	such	a	keen	observer	of	actual	life	and	so	lovingly
devoted	to	the	investigation	of	the	human	heart,	all	the	records	of
the	past	became	a	living	reality	to	him,	and	he	felt	himself	sharing
in	the	drama	as	if	he	had	an	active	part	in	the	cast.	It	was	not	just
a	whim	that	he,	the	untiring	letter	writer,	started	to	“correspond”
with	characters	of	ancient	times,	as	if	they	could	answer	him.
When	he	read	their	works,	he	almost	forgot	that	they	were	long
since	dead.2

No	wonder	Shakespeare	so	often	found	inspiration	and	material	for	his	plays	in
Petrarch.	Through	Shakespeare	and	others	who	read	Petrarch,	he	played	an
influential	role	in	shaping	future	culture.

Petrarch	was	no	fan	of	the	Pythagorean	doctrine	of	reincarnation,	which	he
thought	was	an	example	of	the	way	a	wise	and	brilliant	man	can	be	perfectly
capable	of	coming	up	with	nonsense.	“Who	does	not	know,”	he	wrote,	“that
Pythagoras	was	a	man	of	exalted	genius?	However,	we	also	know	his
Metempsychosis.	I	am	amazed	beyond	belief	that	this	idea	could	spring	up	in	the
brain,	not	of	a	philosopher,	but	even	of	any	human	being.”	Pythagoras’	claim	to
have	been	Euphorbus	in	an	earlier	life	was	“an	empty	lie”	and	“deceitful
pretense.”	But	then	Petrarch	also	scorned	Democritus’	suggestion	that	“heaven
and	earth,	and	all	things	in	general,	consist	of	atoms.”3



Petrarch,	as	imagined	by	engraver	Rob	Hart,	1835

A	few	pages	after	his	disparaging	words,	Petrarch	turned	around	and
referred	to	Pythagoras	in	reverential	tones	as	“the	most	ancient	of	all	natural
philosophers.”	No	one	knows	where	he	got	the	quotation	that	he	attributed	to
Pythagoras	and	used	to	defend	not	only	the	Christian	faith	but	also	Plato	and
Moses	from	those	who	“blind	and	deaf	as	they	are,	do	not	even	listen	to
Pythagoras,	who	asserts	that	‘it	is	the	virtue	and	power	of	God	alone	to	achieve
easily	what	Nature	cannot,	since	He	is	more	potent	and	efficient	than	any	virtue
or	power,	and	since	it	is	from	Him	that	Nature	borrows	her	powers.’	”4	Petrarch
did	not	believe	that	Pythagoras	had	actually	written	this,	or,	indeed,	anything,
but	he	thought	that	others	had	written	down	“what	he	expounded	in	his
conversations.”

Petrarch	is	often	called	the	first	humanist.	He	trusted	God	so	devoutly	and
completely	that	he	felt	free	to	leave	the	deepest	religious	issues	alone	and
concentrate	instead	on	philosophy,	which	he	preferred	to	define	as	the	study	of
the	art	of	happiness	and	living	well.5	Pythagoras,	Plato,	and	Christianity	seemed
a	natural,	logical	continuum	to	him.

IN	THE	MIDDLE	of	the	next	century,	the	fifteenth,	no	less	a	personage	than
Lorenzo	de	Medici	lent	his	patronage	to	an	attempt	to	re-create	Plato’s	Academy
at	the	villa	of	his	acquaintance	Marsilio	Ficino,	near	Florence.	The	Accademia
Platonica	was	Ficino’s	brainchild	and	dream.	He	translated	all	of	Plato’s	works
into	Latin	directly	from	the	Greek,	wrote	commentaries	on	them,	and	gathered	a



group	of	writers,	thinkers,	and	artists	to	study	them	in	a	congenial	setting.	When
Ficino	had	also	finished	translating	Porphyry,	Iamblichus,	Proclus,	and	Plotinus,
those	who	knew	no	Greek	could	read	nearly	the	entire	surviving	output	of	the
Platonic	and	neo-Platonic	writers	in	Latin.	It	is	a	pity	that	Petrarch	had	lived	a
century	too	early	to	enjoy	all	these	works	in	translation!

One	of	Ficino’s	Academy	members	was	the	artist	Botticelli,	whose	painting
Primavera	was	supposed	to	be	a	visual	metaphor	for	the	music	of	the	spheres,
relating	mythological	creatures	to	planetary	orbits	and	the	notes	of	an	octave	in
music.	Ficino	himself	developed	an	elaborate	system	of	heavenly	music.	He	was
also	interested	in	the	early	church	fathers	and,	like	Petrarch,	thought	that
Platonic	doctrine	and	reasoning	(which	he	thought	were	divinely	inspired)	were
in	harmony	with	Christianity,	having	particular	value	in	that	they	could	provide
independent	confirmation	of	Christian	beliefs	in	a	manner	that	would	satisfy
those	among	Ficino’s	contemporaries	who	were	of	a	skeptical	and	even	atheistic
frame	of	mind.	He	gave	a	Pythagorean/Platonic	spin	to	his	treatment	of	the	fall
and	salvation	of	man,	referring	to	the	belief	that	the	earthly	existence	of	the	soul
is	an	exile	from	its	divine	home.	The	Pythagoreans	and	Platonists	agreed,	he
wrote,	that	“because	of	a	certain	old	disease	of	the	human	mind,	everything	that
is	very	unhealthy	and	difficult	befalls	us;	but,	if	anyone	should	restore	the	soul	to
its	previous	condition,	then	immediately	all	will	be	set	in	order.”	To	Ficino,	that
sounded	like	humanity	in	its	fallen	state	looking	toward	the	salvation	of	Jesus,	in
Christian	doctrine.	A	yearning	to	turn	back	to	God	was	built	into	human	nature:

Just	as	[according	to	Aristotle]	when	an	element	is	situated
outside	its	proper	location,	its	power	and	natural	inclination
toward	that	natural	place	are	preserved	together	with	its	nature,	in
so	far	as	it	is	able	at	some	time	to	return	to	its	own	region;	so,
they	[the	Pythagoreans	and	Platonists]	think,	even	after	man	has
wandered	from	the	right	way,	the	natural	power	remains	to	him	of
returning	first	to	the	path,	then	to	the	end.6

Ficino	agreed	with	those	neo-Pythagoreans	who	had	concluded	that	the	same
primordial	wisdom	had	emerged	in	different	ages	and	cultures.	The	truth	of
philosophy,	religion,	and	natural	science,	in	all	times	and	places,	was,	at	some
deep,	so	far	unplumbed	level,	one	consistent	truth.	This,	Ficino	thought,	was	a
manifestation	of	the	“unity”	that	the	Pythagoreans	had	held	so	in	awe.

In	the	city	of	Parma	during	this	same	period,	the	musician	and	physician
Giorgio	Anselmi	(some	thought	he	was	also	a	magician)	developed	the	first
system	since	Eriugena’s	to	take	into	account	the	fact	that	the	planets	change	their



system	since	Eriugena’s	to	take	into	account	the	fact	that	the	planets	change	their
distances	from	Earth.	In	Anselmi’s	cosmic	musical	plan,	a	planet	produced	not
one	tone	but	many	different	notes	as	its	distance	changed,	so	that	each	planet
sang	its	own	song.	All	the	planet	songs	together	produced	magnificent
counterpoint	and	harmony.	Though	no	music	of	his	time	went	beyond	a	three-
octave	range,	Anselmi’s	planetary	scale,	calculated	from	the	planets’	periods,
was	eight	octaves	long	from	the	stars	to	the	Moon.

Ficino’s	younger	Florentine	friend	Giovanni	Pico,	Count	of	Mirandola
(known	as	Pico	della	Mirandola),	was	fond	of	using	the	phrase,	the	“ancient
theology	of	Pythagoras.”	He	regarded	Pythagoras	as	no	less	than	a	Christian
sage	and	connected	the	peace	promised	by	Jesus—“Come	unto	me,	ye	who	have
labored,	and	I	will	give	you	peace,	which	the	world	and	nature	cannot	give”—
with	a	Pythagorean	peace	in	which

all	rational	souls	not	only	shall	come	into	harmony	in	the	one
mind	which	is	above	all	minds	but	shall	in	some	ineffable	way
become	altogether	one.	That	is	the	friendship	which	the
Pythagoreans	say	is	the	end	of	all	philosophy.	This	is	that	peace
which	the	[Christmas]	angels	descending	to	earth	proclaimed	to
men	of	good	will,	that	through	it	men	might	ascend	to	heaven	and
become	angels.7

Until	that	time,	“Let	us	wish	for	this	peace	for	our	friends,	for	our	century	.	.	.	for
every	home	into	which	we	go,”	he	wrote.

Pico	did	not	always	write	so	clearly	and	simply.	One	of	his	more
impenetrable	documents	was	“Fourteen	Conclusions	after	Pythagorean
Mathematics,”8	which	arose	out	of	his	fascination	with	“the	method	of
philosophizing	through	numbers”	as	it	was	taught	by	“Pythagoras,	Philolaus,
Plato,	and	the	first	Platonists.”9	Aristotle	would	have	summoned	his	Delian
diver!

1.	Unity,	duality,	and	that	which	is,	are	the	causes	of	numbers:	One,	of
unitary	numbers;	two,	of	generative	ones;	that	which	is,	of	substantial
ones.

2.	In	participated	numbers	some	are	species	of	numbers,	others	unions	of
species.

3.	Where	the	unity	of	the	point	proceeds	to	the	alterity	of	the	binary,	there
the	triangle	first	exists.

4.	Whoever	knows	the	series	of	1,	2,	3,	4,	5,	12,	will	possess	precisely	the
distribution	of	providence.



distribution	of	providence.
5.	By	1,	3,	and	7	we	understand	the	unification	of	the	separate	in	Pallas:	the
causative	and	beatifying	power	of	the	intellect.

6.	The	threefold	proportion—Arithmetical,	Geometrical,	and	Harmonic—
represents	to	us	the	three	daughters	of	Themis,	being	the	symbols	of
judgment,	justice,	and	peace.

7.	By	the	secret	of	straight,	reflected,	and	refracted	lines	in	the	science	of
perspective	we	are	reminded	of	the	triple	nature:	intellectual,	animal,	and
corporeal.

8.	Reason	is	in	the	proportion	of	an	octave	to	the	concupiscent	nature.
9.	The	irascible	nature	is	in	the	proportion	of	a	fifth	to	the	concupiscent.
10.	Reason	is	in	the	proportion	of	a	fourth	to	anger.
11.	In	music	the	judgment	of	the	sense	is	not	to	be	heeded:	only	that	of	the
intellect.

12.	In	numbering	forms	we	should	not	exceed	40.
13.	Any	equilateral	plane	number	may	symbolize	the	soul.
14.	Any	linear	number	may	symbolize	the	gods.

Not	surprisingly,	when	the	twenty-three-year-old	Pico	went	to	Rome	and
offered	to	debate	another	of	his	lists,	Nine	Hundred	Conclusions,	there	were	no
takers.	Like	the	“Fourteen	Conclusions,”	the	Nine	Hundred	were	short
sentences,	covering	the	subjects	of	scholastic	and	earlier	theology,	Arabic	and
Platonic	philosophy,	the	Chaldean	Oracles,	the	Zoroastrian	Magi,	and	Orphic
doctrines.*	All,	Pico	insisted,	were	reconcilable	with	one	another,	and	he	was
prepared	to	debate	anyone	who	disagreed.	Truth	was	universal.	What	might
seem	to	be	opposing	schools	of	thought	and	doctrine	really	were	all	the	same
primordial	wisdom	of	humankind,	sharing	a	common	truth.

Pico’s	interest	was	piqued	by	the	Jewish	Cabalistic	literature,	in	which
words	and	numbers	serve	as	a	form	of	mystical	code.	Cabala	is	a	form	of	Jewish
mysticism	that,	though	it	had	roots	as	early	as	the	first	century	A.D.,	fully
emerged	in	the	twelfth	century.	Though	a	text	of	Merkava	mysticism	(a
precursor	of	Cabala)	had	included	a	creation	story	with	ten	divine	numbers,	and
one	of	the	most	important	Cabalistic	texts,	the	twelfth-century	Sefer	ha-bahir
(“Book	of	Brightness”),	introduced	into	Judaism	the	idea	of	the	transmigration
of	souls,	in	neither	case	was	there	a	known	link	with	Pythagoras.	But	another
man	who	immersed	himself	in	the	Cabala	at	about	the	same	time	as	Pico,
insisted	there	was	a	connection.	Johann	Reuchlin,	a	German	humanist,	set	out	to



combine	the	study	of	Hebrew,	Greek,	theology,	philosophy,	and	the	Cabala,	and
to	link	it	all	with	the	name	of	Pythagoras.	He	wrote	to	Pope	Leo	X	that,	just	as
Ficino	had	so	admirably	done	for	Plato	in	Italy,	he	would	“complete	the	work
with	the	rebirth	of	Pythagoras	in	Germany.”	He	rationalized	the	connection	with
the	Cabala	by	drawing	attention	to	the	(questionable)	fact	that	“the	philosophy	of
Pythagoras	was	drawn	from	the	teachings	of	Chaldean	science.”10†

IN	THE	SAME	century	when	Ficino	set	up	his	Florentine	academy	and	Pico	issued
his	intellectual	challenges,	their	older	contemporary	Leon	Battista	Alberti,
inspired	by	the	work	of	the	ancient	Roman	Vitruvius,	was	insisting	on	beautiful
proportions	in	buildings	and	applying	Pythagorean	principles	to	architecture.
Books	on	architecture	seemed	to	come	in	sets	of	four	or	ten	volumes—two	good
Pythagorean	choices.	Vitruvius	had	written	his	“Ten”	in	the	first	century	B.C.,
and,	Alberti	produced	his	“Ten”	in	1485.*	They	were	translated	from	Latin	into
Italian	in	the	mid-sixteenth	century.	Alberti	liked	to	use	what	he	thought	were
Pythagorean	ideas	and	extend	them	in	ways	of	his	own:

I	am	every	day	more	and	more	convinced	of	the	truth	of	the
Pythagorean	saying,	that	Nature	is	sure	to	act	consistently,	and
with	a	constant	analogy	in	all	her	operations.	From	whence	I
conclude	that	the	numbers	by	means	of	which	the	agreement	of
sounds	affects	our	ears	with	delight,	are	the	very	same	which
please	our	eyes	and	mind.	We	shall	therefore	borrow	all	our	rules
for	the	finishing	of	our	proportions	from	the	musicians,	who	are
the	greatest	masters	of	this	sort	of	numbers,	and	from	those	things
wherein	nature	shows	herself	most	excellent	and	complete.11

Alberti	divided	the	kinds	of	areas	to	be	measured	in	an	architectural	design
into	three	categories:	short,	medium,	and	long.	The	Pythagorean	ratios	were	the
only	ones	that	he	applied	to	the	“short”	or	“simple”	areas:	The	shortest	was	a
square;	the	next	an	area	that	started	with	a	square	and	then	added	on	a	third	again
as	much	space,	making	a	ratio	of	3	to	4	between	the	square	and	the	total	area.

The	last	also	started	with	a	square	and	added	on	half	again	as	much	space,
making	a	ratio	of	2	to	3	between	the	square	and	the	total	area.



making	a	ratio	of	2	to	3	between	the	square	and	the	total	area.

For	larger	areas,	Alberti	used	proportions	that	went	beyond	these	ratios,	but	all
could,	in	one	way	or	another,	be	linked	to	them.

Though	Alberti	was	one	of	the	most	important	theorists	of	architecture	in	the
Renaissance	and	also	one	of	that	era’s	greatest	practitioners,	his	achievements
were	by	no	means	confined	to	architecture.	He	was	truly	a	“Renaissance	man”—
a	moral	philosopher,	a	major	contributor	to	the	techniques	of	surveying	and
mapping,	a	pioneer	in	cryptography,	and	the	first	to	systematize	and	set	down
the	rules	for	drawing	a	three-dimensional	picture	on	a	two-dimensional	surface,
establishing	principles	that	would	underlie	perspective	drawing	from	that	time
forward.	Nevertheless,	it	was	arguably	in	architecture	that	he	had	his	most
lasting	impact,	not	only	because	of	the	splendid	buildings	he	designed,	but	also
because	his	Ten	Books,	with	their	Pythagorean	principles,	were	read	and	studied
by	all	Renaissance	architects	after	him,	including	Andrea	Palladio,	perhaps	the
most	influential	architect	of	all	time.*

IN	THE	EARLIER	part	of	Alberti’s	century,	Nicholas	of	Cusa,	born	in	1401,	had
been	considering	a	startling,	fresh	approach	to	structure	on	a	much	larger	scale:
the	entire	cosmos.	Though	his	name	sounds	Italian,	Nicholas	was	the	son	of	a
boatman	on	the	Mosel	River.	He	received	his	religious	training	with	a	devotional
group	of	laymen	in	the	Netherlands	and	his	university	education	at	Heidelberg
and	Cologne.	Later,	as	a	university	scholar	and	a	cardinal	of	the	Catholic	church,
Nicholas	not	only	found	Christian	faith	and	classical	philosophy	compatible,	but
that	compatibility	became	for	him	a	fertile	ground	from	which	to	begin
innovative	thinking	in	other	areas	of	knowledge.	He	decided	that	God	was
infinite,	and	the	universe	had	no	limit	other	than	God	.	.	.	so	the	universe	was
infinite	too.	Contrary	to	what	most	people	believed	(they	had	learned	it	from
Aristotle),	he	insisted	that	the	universe	was	not	made	of	different	types	of
substance	at	different	levels,	such	as	the	impure	region	near	Earth	and	the	pure
region	of	the	celestial	spheres.	The	universe	was	homogeneous.	The	stars	were
“each	like	the	world	we	live	in,	each	a	particular	area	in	one	universe,	which
contains	as	many	such	areas	as	there	are	uncountable	stars.”12	Nicholas	was	sure
that	Earth	was	a	star	like	the	Sun	and	the	other	stars,	and	it	moved.	This	was	not
the	orthodox,	Ptolemaic/Aristotelian	stationary-Earth-centered	astronomy	that



was	being	taught	in	the	universities!	Nicholas	worked	his	ideas	up	in	a	highly
original,	mathematics-based	system.	He	did	not	suggest	another	body	to	usurp
the	importance	of	the	Earth,	but	even	without	nominating	a	competitor	for
“center	of	the	universe,”	his	proposal	was	a	huge	demotion.

Nicholas	believed	the	human	mind	had	innate	power	to	know	things	and	to
acquire	knowledge,	and,	like	Aristotle,	he	thought	that	knowledge	had	to	be
acquired	directly	from	nature	and	experience.	He	also	believed	that	learning
about	nature	and	the	universe	required	the	use	of	numbers	and	the	study	of
numerical	proportion	and	ratios.	He	was	fond	of	the	Pythagorean	practice	of
applying	numbers	to	many	aspects	of	life.	In	his	treatise	“On	Catholic
Concordance”	he	used	the	order	of	the	heavens	as	a	model	for	harmony	in	the
church;	and	in	his	book	Of	Learned	Ignorance	he	drew	a	parallel	between	the
search	for	truth	and	converting	a	square	to	a	circle.

Nicholas,	like	Alberti,	was	a	Renaissance	man.	He	drew	up	a	map	of	Europe
and	was	the	first	to	prove	that	air	has	weight.	He	apparently	never	worried
whether	his	ideas	about	the	arrangement	of	the	cosmos	might	conflict	with
church	doctrine.	It	seems	he	had	no	reason	for	concern.	The	church	never
condemned	or	criticized	him.

Astronomy	was	about	to	take	an	even	more	decidedly	Pythagorean	turn.	In
1495,	twenty-two-year-old	Nicolaus	Copernicus	and	his	older	brother	Andreas
journeyed	south	from	their	native	Poland	and	“walked	across	the	Alps”—their
destination	Bologna,	seat	of	Italy’s	oldest	university.	Nicolaus	had	completed
four	years	at	the	Jagiellonian	University	in	Kraków,	which	was	renowned	for	its
astronomy.	If	a	student	intended	to	continue	his	education	after	he	had	finished
the	quadrivium	and	the	trivium,	he	chose	an	area	of	study	and	went	to	a
university	that	specialized	in	that.	Nicolaus’	uncle	and	guardian,	an	influential
man	who	became	bishop	of	Warmia,	was	apparently	worried	that	his	nephew
was	developing	a	keen	interest	in	astronomy.	Hoping	that	the	Italian	sunshine
and	the	stimulating	intellectual	community	of	the	University	of	Bologna	would
turn	the	young	man’s	interest	in	a	better	direction,	he	insisted	Nicolaus	go	to
Bologna,	famous	for	its	law	faculty.	(Copernicus	did	eventually	receive	a
doctorate	in	canon	law,	the	law	of	the	church,	although	not	from	Bologna.)

While	studying	in	Bologna,	Copernicus	met	the	university’s	leading	scholars
and	teachers	of	astronomy	and	astrology,	and	also	a	mathematician	named	Maria
de	Novara,	whose	influence	was	probably	the	most	valuable	of	all	that
Copernicus	carried	away	with	him	from	these	years.	Novara	was	a	neo-Platonist
and	a	close	younger	associate	of	the	men	of	Ficino’s	academy	in	Florence.	His
neo-Platonism	was	decidedly	Pythagorean.	He	fervently	believed	in	the	need	to



uncover	the	simple	mathematical	and	geometric	reality	that	underlies	the
apparent	complexity	of	nature,	and	he	insisted	that	nothing	so	complicated	and
cumbersome	as	Ptolemaic	astronomy	could	possibly	be	a	correct	representation
of	the	cosmos.	His	young	friend	Copernicus	came	to	agree.

No	new	astronomical	discovery,	nor	any	better	or	more	accurate
observations	of	the	heavens,	caused	Copernicus	to	discard	Ptolemaic	Earth-
centered	astronomy	and	replace	it	with	a	system	in	which	the	Sun	was	at	the
center.	Though	over	the	long	passage	of	years	the	errors	produced	by	the
Ptolemaic	system	had	made	it	less	and	less	accurate	in	predicting	planetary
positions,	no	observational	instrument	during	Copernicus’	lifetime	was	accurate
enough	to	show	whether	the	Copernican	system	solved	this	problem.	The
telescope	would	not	appear	until	early	in	the	seventeenth	century,	and	the
astronomical	observations	that	Copernicus	made	himself	were	often	less
accurate	than	those	of	Hellenistic	and	Islamic	astronomers	centuries	before	him.

The	early	Pythagoreans,	in	the	wake	of	their	discovery	of	the	ratios	of
musical	harmony,	had	gone	off	in	wild	and	misguided	directions	to	decide	there
had	to	be	ten	bodies	in	the	cosmos,	disregarding	the	fact	that	there	was	no
evidence	of	that	number’s	correctness,	running	ahead	of	nature,	and	arriving	at
the	wrong	conclusions.	And	here	was	Copernicus,	doing	something	of	the	same
kind,	for	when	he	decided	that	Ptolemaic	astronomy	could	not	be	correct,	he	did
so	largely	for	reasons	other	than	physical	evidence.	The	beginning	of	the
scientific	revolution	was	perhaps	not	so	scientific—not	in	the	way	we	most
commonly	think	of	“scientific.”

Copernicus	translated	at	least	two	Greek	texts	into	Latin,	unaware	that	one
of	them,	Lysis’	Letter	to	Hipparchus,	was	a	forgery.	That	he	knew	of	the	Letter
at	all	was	symptomatic	of	his	intense	interest	in	Pythagoras	and	the
Pythagoreans.	He	even	originally	named	his	new	system	not	the	“Copernican
system,”	but	the	Astronomia	Pythagorica	or	Astronomia	Philolaica,	and	he
considered	adopting	the	Pythagorean	practice	of	secrecy.	In	the	prefatory	letter
dedicating	his	De	revolutionibus	to	Pope	Paul	III,	he	defended	his	long	delay	in
publishing	this	masterwork	by	pointing	to	the	example	of	Pythagoras	and	the
Pythagoreans.

Thinking	therefore	within	myself	that	to	ascribe	movement	to	the
Earth	must	indeed	seem	an	absurd	performance	on	my	part	to
those	who	know	that	many	centuries	have	consented	to	the
establishment	of	the	contrary	judgment,	namely	that	the	Earth	is
placed	immovably	as	the	central	point	in	the	middle	of	the



Universe,	I	hesitated	long	whether,	on	the	one	hand,	I	should	give
to	the	light	these	my	Commentaries	written	to	prove	the	Earth’s
motion,	or	whether,	on	the	other	hand,	it	were	better	to	follow	the
example	of	the	Pythagoreans	and	others	who	were	wont	to	impart
their	philosophic	mysteries	only	to	intimates	and	friends,	and	then
not	in	writing	but	by	word	of	mouth,	as	the	letter	of	Lysis	to
Hipparchus	witnesses.13

Nicolaus	Copernicus

Copernicus	had	thought	of	including	the	Letter	in	De	revolutionibus,	but	decided
not	to.	Having	defended	his	long	period	of	secrecy,	however,	he	went	on	in	the
same	preface	letter	to	point	to	the	Pythagoreans	as	an	ancient	precedent	for	his
own	ideas.	Because	of	his	dissatisfaction	with	the	Ptolemaic	accounts	of	the
heaven’s	motions,	he	said,	he	had	begun	to	search	in	“the	works	of	all	the
philosophers	on	whom	I	could	lay	hand.”	He	had	discovered	some	influential
figures	who	had	not,	after	all,	agreed	with	the	overwhelming	consensus.
Aristarchus	in	the	third	century	B.C.	had	moved	the	Sun	to	the	center	in	his
remarkable	cosmology.	Cicero	had	mentioned	Hicetas’	suggestion	that	the	Earth
moved.	Even	better,	Plutarch	had	written	in	his	Placita	(Copernicus	quoted	in
Greek),



The	rest	hold	the	Earth	to	be	stationary,	but	Philolaus	the
Pythagorean	says	that	she	moves	around	the	fire	on	an	oblique
circle	like	the	Sun	and	Moon.	Heraclides	of	Pontus	and
Ecphantus	the	Pythagorean	also	make	the	Earth	to	move,	not
indeed	through	space	but	by	rotating	round	her	own	center	as	a
wheel	on	an	axle,	from	West	to	East.14*

The	philosopher	Paul	Feyerabend	observed	that	when	Copernicus	decided	to
order	the	heavens	he	did	not	consult	his	“scientific	forebears,”	but	instead	cited	a
“crazy	Pythagorean.”15

In	Chapter	10	of	Book	One	of	De	revolutionibus,	Copernicus	illustrated
most	fully	the	new	and	aesthetically	beautiful	harmony	of	his	system,	revealing
in	the	process	how	well	he	knew	his	Plato,	a	wealth	of	other	classical	literature,
and	even	the	work	of	the	Islamic	astronomers.	Calling	attention	to	the	simplicity
of	the	new	system,	he	wrote:

I	think	it	easier	to	believe	this	than	to	confuse	the	issue	by
assuming	a	vast	number	of	spheres,	which	those	who	keep	Earth
at	the	center	must	do.	We	thus	rather	follow	Nature,	who,
producing	nothing	vain	or	superfluous,	often	prefers	to	endow
one	cause	with	many	effects.	.	.	.	So	we	find	underlying	this
ordination	an	admirable	symmetry	in	the	universe,	and	a	clear
bond	of	harmony	in	the	motion	and	magnitude	of	the	spheres
such	as	can	be	discovered	in	no	other	wise.16

The	Pythagorean	insight,	from	the	sixth	century	B.C.,	that	harmony	and	simple
pattern	expressed	in	numbers	underlie	nature	clearly	was	for	Copernicus	a
persuasively	strong	point	in	favor	of	his	rearrangement	of	the	cosmos.	The
potential	of	numbers,	in	combination	with	a	preference	for	harmony	and
simplicity,	to	lead	to	a	truer	understanding	of	the	universe—a	potential	that	had
been	poorly	exploited	by	the	early	Pythagoreans	and	reinterpreted	in	many	ways,
some	of	them	admittedly	quite	strange,	by	a	great	many	people	since—was
finally	about	to	be	realized.

Copernicus	would	not	live	to	see	the	result	of	his	own	Pythagorean	dream	in
print.	If	he	saw	a	printed	copy	of	De	revolutionibus	at	all	it	was	on	his	deathbed,
for	he	had	followed	the	Pythagorean	example	of	secrecy	for	years	before
deciding,	finally,	to	publish.	The	astronomy	he	was	able	to	devise	in	the	book
turned	out	to	be,	in	its	details,	almost	as	complicated	as	Ptolemy’s,	but	those	few



who	read	it	carefully	and	recognized	that	Copernicus	meant	his	revolutionary
Sun-centered	suggestion	to	be	taken	seriously,	found	their	minds	set	on	a	fresh
path	indeed.	The	great	Pythagorean	insight	that	had	led	Copernicus	was	about	to
lead	younger	men	out	of	the	Middle	Ages	and	into	the	modern	world.

OTHERS	IN	THE	sixteenth	century	were	captivated	by	the	ideas	of	the
Pythagoreans	for	what	might	on	the	surface	seem	to	be	entirely	different	reasons.
However,	there	were	deep	connections	having	to	do	with	harmony	and	numbers.

Architectural	trends	begun	by	Vitruvius	in	antiquity	and	continued	by
Alberti	in	the	fifteenth	century	were	brought	to	their	zenith	in	the	sixteenth	in	the
work	of	one	of	the	most	gifted	architectural	geniuses	of	all	time,	Andrea
Palladio,	whose	rise	from	stonemason	to	educated	architect	occurred	thanks	to
an	“academy”	like	the	one	that	Marsilio	Ficino	had	established	and	Lorenzo	de
Medici	had	patronized	in	the	fifteenth	century	at	Ficino’s	villa	near	Florence.
Following	Ficino’s	model,	academies	had	become	a	part	of	life	in	northern	Italy;
nearly	every	important	town	had	one.	Conscious	attempts	to	re-create	Plato’s
original,	they	were	a	combination	of	boarding	school,	lecture	center,	and
attractive	location	for	scholars,	intellectuals,	and	lovers	of	learning	to	meet	and
discuss	literature,	philosophy,	mathematics,	and	music.	The	activities	often
included	physical	exercise	and	musical	performances.	To	a	surprising	extent,
social	rank	was	disregarded	and	talented	or	clever	men	of	no	social	standing
rubbed	shoulders	with	wealthy	aristocrats.

When	Palladio	was	in	his	early	twenties,	in	the	early	1530s,	he	was	hired	as
a	stonemason	for	a	building	project	near	Vicenza.	Count	Gian	Giorgio	Trissino,
a	wealthy	humanist	scholar	and	poet,	was	rebuilding	his	villa	in	the	classical
style	to	house	an	academy.	Trissino	had	designed	the	new	buildings	himself,	and
he	thought	of	his	design	as	an	interpretation	of	the	work	of	Vitruvius.	Keeping
an	eye	on	the	progress	of	the	construction,	Trissino	watched	Palladio	at	work,
made	a	point	of	getting	to	know	him,	and	decided	that	the	young	man	deserved
to	have	a	humanist	education.

In	his	famous	I	quattro	libri	dell’	architettura,	published	in	1570,	Palladio
would	make	a	deliberate	connection	with	the	Pythagorean	discovery	that	certain
ratios	in	music	produced	sounds	that	were	pleasant	to	human	ears	regardless	of
whether	the	hearer	knew	the	underlying	numbers.	“Just	as	the	proportions	of
voices	are	harmony	to	the	ears,”	he	wrote,	“so	those	of	measurement	are
harmony	to	the	eyes,	which	according	to	their	habit	delight	in	them	to	a	great
degree,	without	it	being	known	why,	save	by	those	who	study	to	know	the
reasons	of	things.”17	For	him,	the	“preferred”	numbers	that	would	produce	such



spontaneous	delight	for	the	beholder	of	a	building	were	those	based	on	the	same
sequences	the	Pythagoreans	had	discovered	in	the	ratios	of	musical	harmony:	1
to	2,	2	to	3,	and	3	to	4.

In	Book	I	of	I	quattro	libri,	Palladio	chose	“seven	sets	of	the	most	beautiful
and	harmonious	proportions	to	be	used	in	the	construction	of	rooms.”	Of	course
the	circle	and	square	were	among	them.	Four	others	were	derived	from	the
Pythagorean	musical	ratios,	and	the	remaining	one	was	the	same	room	Vitruvius
had	designed	based	on	Socrates’	lesson	in	Plato’s	Meno,	with	one	dimension	of
the	room	being	incommensurable.	Palladio’s	seven	shapes	and	proportions	were
a	circle,	a	square	(1:1),	a	room	whose	length	was	the	same	as	the	diagonal	of	the
square	(1:1.414	.	.	.	etc.),	a	square	plus	a	third	(3:4),	a	square	plus	a	half	(2:3),	a
square	plus	two	thirds,	and	a	double	square	(1:2).

Though	Palladio	devoted	only	one	chapter	in	the	second	book	of	I	quattro
libri	to	harmonic	proportions,	and	other	authors	who	wrote	about	him	later	were
more	concerned	than	he,	the	craftsman,	for	the	theoretical	aspects	of	his	work,
these	Pythagorean	proportions	were	abundantly	evident	in	his	drawings.18	It
seemed	not	to	bother	Palladio	that	there	were	differences	between	the	drawings
of	buildings	and	the	actual	buildings	that	resulted.	If	one	believed	Plato,	the
Forms	were	never	perfectly	realized	in	the	material	world.



Andrea	Palladio

I	quattro	libri	was	probably	the	most	influential	book	ever	written	about
architecture.	Palladio	wrote	it	in	Italian	for	a	lay	audience,	and	Daniele	Barbaro,
an	architectural	expert	in	his	own	right,	for	whom	Palladio	designed	the	Villa
Barbaro	in	the	Veneto	near	Venice,	aptly	described	it	as	a	complete	guide	to
building	from	the	foundation	to	the	roof.	Soon	after	publication	in	1570,	the
book	and	its	drawings	became	the	rage	throughout	mainland	Europe	and,	early
in	the	next	century,	Inigo	Jones	returned	from	a	trip	to	Italy	and	introduced
Palladian	design	to	England.	Following	this	“first	great	English	Palladian,”
whose	surviving	buildings	include	the	Queen’s	Chapel	at	St.	James’s	Palace	and
the	Banqueting	House	at	Whitehall,	many	of	England’s	large	country	houses
were	soon	being	built,	or	rebuilt,	along	Palladian	lines.	Lord	Burlington
constructed	the	Assembly	Rooms	at	York	on	Palladio’s	designs	and	fashioned
his	own	home,	Chiswick	House,	after	Palladio’s	Villa	Rotonda.	Around	1800,
Thomas	Jefferson	designed	his	Palladian	Monticello	in	Virginia,	and	numerous
American	churches	of	many	denominations,	university	buildings,	and	official
structures	and	memorials	and	monuments	in	Washington,	D.C.,	were	following
suit,	for	the	feeling	was	that	there	was	a	link	between	Palladian	principles	of
architecture,	with	their	Pythagorean	proportions,	and	the	education,



enhancement,	and	wise	governance	of	society.	Palladian	design	spread	to
Germany,	Russia,	Poland,	back	to	Italy,	and	to	Scandinavia.

One	of	the	most	unusual	houses	built	using	Palladian	proportions	was	the
palace-observatory	that	Tycho	Brahe,	the	finest	pre-telescope	astronomer,
constructed	in	the	latter	part	of	the	sixteenth	century	on	the	island	of	Hven	in
Denmark.	As	a	young	aristocrat	traveling	in	Europe,	Tycho	had	visited	Venice
and	the	Veneto	during	the	years	when	Palladio	himself	was	building	there,	and
had	probably	also	seen	I	quattro	libri,	for	he	had	a	connoiseur’s	appreciation	of
fine	books.	Perhaps	Tycho	was	also	aware	of	Palladio’s	humble	origins	as	a
stonemason	because,	for	his	own	project,	he	hired	a	stonemason	named	Hans
van	Steenwinkel	and	raised	him	to	the	rank	of	master	builder.

Not	everyone	who	would	build	in	the	“Palladian”	style	would	pay	mind	to
Pythagorean	or	Palladian	proportions,	but	Tycho	Brahe	did.	When	his
“Uraniborg”	was	finished,	although	it	looked	at	first	glance	anything	but
Palladian,	the	Pythagorean	musical	ratios	were	all	there	and	the	symmetry
extended	into	the	landscape,	just	as	Palladio	advised.	The	portal	towers	on	the
east	and	west	sides	of	the	house	were	each	fifteen	Danish	feet	wide	and	fifteen
feet	long;	the	height	of	the	façade	was	thirty	feet,	the	peak	of	the	roof	forty-five
feet,	the	side	of	the	central	block	sixty	feet,	giving	the	ratio	1:2:3:4.	The	same
ratios	underlay	the	dimensions	of	Tycho’s	rooms	and	other	elements	of	the
structure.	The	perimeter	wall	around	Tycho’s	garden	enclosed	a	square	divided
by	avenues	on	the	diagonal,	just	as	Socrates	had	divided	the	squares	in	Plato’s
Meno.	Someone	unaware	of	Tycho’s	intentions,	and	not	steeped	in	the
architecture	of	Palladio	or	on	the	lookout	for	Pythagorean	ratios,	would	not	have
noticed	these	mathematical	and	musical	subtleties,	but	Tycho	was	sure	this
harmony	would	make	his	home	and	gardens	satisfying	to	the	eye	and	soul,
encouraging	peaceful,	intelligent	work	and	inspiring	any	sensitive	person.	Tycho
designed	and	built	Uraniborg	to	be	both	a	palace	home	and	an	observatory,	all
for	the	purpose	of	better	scrutinizing	the	heavens	where	the	Pythagorean
harmony	of	the	spheres—the	musical	ratios,	or	perhaps	even	some	deeper
harmony—might	be	discovered.	Nowhere	else	was	the	Pythagorean	and
Palladian	ideal	of	proportion	so	literally,	and	so	idiosyncratically,	realized,	as	in
Uraniborg.19

For	complicated	reasons	involving	Danish	politics	and	personal	issues,
Tycho	Brahe	eventually	abandoned	this	remarkable,	beloved	palace,	and
Denmark,	and	went	into	exile—the	exile	that	made	it	possible	for	him	to	meet
Johannes	Kepler.



CHAPTER	16

“While	the	morning	stars	sang
together”:	Johannes	Kepler
Sixteenth	and	Seventeenth	Centuries

AS	THE	LAST	DECADE	OF	THE	sixteenth	century	began,	the	two-thousand-year-old
Pythagorean	dream	of	rationality,	unity,	and	the	power	of	numbers	was	about	to
be	given	a	serious	test.	Pythagoras	and	his	followers	had	been	sure	they	had
caught	a	glimpse,	as	through	a	crack	or	a	keyhole,	of	truth	based	on	numbers	that
lay	beyond	the	façade	of	nature.	Johannes	Kepler	would	force	the	door	wide
open,	once	and	for	all.	After	him,	ironically,	and	though	Kepler	did	not	intend	it
to	be	so,	the	Pythagorean	concept	of	the	music	of	the	spheres	would	survive	only
in	poetic	imagery.	Yet	in	a	profound	and	magnificent	way,	the	faith	embodied	in
that	concept—faith	in	a	wondrously	rational	and	ordered	universe—tempered	by
Kepler’s	imaginative	genius	and	rigorous	mathematics,	would	finally	place	real
examples	of	that	music	under	the	feet	of	science.

The	higher	seminary	at	Maulbronn,	which	Kepler	attended	in	the	1580s	as	a
troubled	but	exuberantly	intellectual	and	religious	teenager,	taught	“spherics”
and	arithmetic,	but	it	was	not	until	he	enrolled	at	the	University	of	Tübingen	that
he	encountered	astronomy.	The	mission	of	the	Stift	at	the	university	where
Kepler	studied	and	had	his	lodgings	was	to	prepare	young	men	for	careers	of
service	to	the	Duke	of	Württemberg	or	for	the	Lutheran	clergy,	but	the	course	of
study	was	broadly	focused.	The	conviction	that	there	was	a	unity	to	all
knowledge	lived	on	in	the	“Philippist”	curriculum	at	the	great	Lutheran
universities	after	the	Reformation,	as	it	had	in	the	classical	and	medieval
quadrivium	and	trivium	and	in	humanist	thinking.	“Philippist”	referred	to	the
educational	philosophy	of	Martin	Luther’s	disciple	and	friend	Philipp
Melanchthon,	who	had	insisted	that	one	could	not	truly	comprehend	and	master
any	part	of	knowledge	unless	one	comprehended	and	mastered	the	whole	of	it—
a	sentiment	the	Pythagorean	Archytas	would	have	applauded.	Melanchthon	felt
the	church	could	not	succeed	in	teaching	the	path	to	salvation	unless	it	produced
a	well-read	scholarly	clergy	thoroughly	grounded	in	the	liberal	arts.	Reading	the
Scriptures,	the	church	fathers,	and	the	classical	philosophers	required	facility	in
Hebrew,	Latin,	and	Greek.	Arithmetic	and	geometry	were	necessary	for



comprehension	of	both	the	secular	and	the	sacred	aspects	of	the	world,	and
astronomy	was	the	most	heavenly	of	the	sciences.	Philippist	philosophy	also
held	that	since	the	cosmos	was	orderly	and	harmonious,	one	could,	and	should,
not	only	observe	and	record	things	but	also	hypothesize	about	them.

Early	in	his	university	career,	Kepler	realized	that	theology,	mathematics,
and	astronomy	would	all	be	essential	in	his	personal	search	for	truth.	He	never
ceased	to	be	a	devoutly	religious	man,	but,	as	he	later	wrote,	he	believed	that
“God	also	wants	to	be	known	through	the	Book	of	Nature.”	Perhaps	it	was	in
that	interest	(Kepler	would	have	thought	so)	that	God	had	placed	a	superb
professor	of	mathematics	and	astronomy	at	the	University	of	Tübingen:	Michael
Mästlin.

When	Kepler	first	arrived	there	in	1589,	forty-six	years	had	passed	since	the
death	of	Copernicus	and	the	publication	of	his	De	revolutionibus	in	1543.	Many
scholars	were	finding	Copernicus’	grasp	of	celestial	mechanics	and	his
mathematics	invaluable,	while	choosing	to	ignore	his	rearrangement	of	the
cosmos.	The	University	of	Tübingen	still	officially	taught	Ptolemaic	astronomy,
and	Michael	Mästlin	made	sure	his	pupils	had	a	good	grounding	in	that,	for
which	Kepler	would	later	be	grateful	when	he	sought	to	overturn	it.	But	Mästlin
believed	that	Copernicus’	system	had	to	be	taken	literally	and	that	the	planets
and	the	Earth	do,	indeed,	orbit	the	Sun.	Kepler	also	read	Nicholas	of	Cusa	and
was	soon	writing:	“I	have	by	degrees—partly	out	of	Mästlin’s	lectures,	partly
out	of	myself—collected	all	the	mathematical	advantages	which	Copernicus	has
over	Ptolemy.”	In	a	letter	he	wrote	later	to	Mästlin,	Kepler	called	Pythagoras	the
“grandfather	of	all	Copernicans.”1



Johannes	Kepler

During	his	university	years,	Kepler	rapidly	became	well-read	in	the	classics
and	also	encountered	neo-Platonic/Pythagorean	thinkers	of	his	own	era.	He	gave
all	of	it	a	religious	and	Pythagorean	spin	of	his	own:	A	universe	created	by	God
must	surely	be	the	perfect	expression	of	a	profound	hidden	order,	harmony,
simplicity,	and	symmetry,	no	matter	how	complicated	and	confusing	it	might
appear	to	people	who,	like	himself,	were	only	beginning	to	understand	it.	This
was	the	conviction	that	set	fire	to	his	spiritual	and	scientific	imagination,	and
that	flame	would	last	him	a	lifetime.	He	was	about	to	pin	this	idea	to	the	wall
using	more	precise	observations	of	the	heavens	and	his	innate	genius	for
rigorous	mathematics:	a	potent	combination.

While	still	a	student	at	Tübingen,	Kepler	openly	defended	Copernican
astronomy	in	two	formal	debates,	arguing	that	the	planets’	periods	and	their
distances	from	the	Sun	made	far	better	sense	in	the	Copernican	system;	and	that
if	the	Sun	was	indeed	(like	the	Creator)	the	source	of	all	change	and	motion,	then
it	might	follow	that	the	closer	a	planet	was	to	the	Sun,	the	faster	it	would	travel.
He	worked	busily	and	happily	on	astronomical	questions	and	wrote	a	piece	about
how	the	movements	of	the	heavens	would	appear	to	someone	on	the	Moon.
Despite	all	that,	it	seems	not	to	have	occurred	to	him	that	he	might	pursue	any
career	other	than	as	a	clergyman.



Near	the	end	of	his	fifth	university	year,	Kepler	learned	that	his	time	at
Tübingen	was	to	end	immediately,	and	not	in	the	way	he	had	planned.	A
Protestant	school	in	southern	Austria	appealed	to	the	university	for	a	teacher,
mainly	for	mathematics	but	also	with	knowledge	of	history	and	Greek.	Tübingen
had	decided	to	send	Kepler.	Sorely	discouraged	and	frustrated,	he	made	the
move	to	Graz.	It	was	there	that,	about	a	year	after	his	arrival,	while	drawing	a
diagram	on	the	board	for	his	pupils,	he	made	the	startling	discovery	that	a
triangle	seemed	somehow	to	be	dictating	the	distance	between	the	orbits	of
Jupiter	and	Saturn.	The	triangle	was	the	Pythagorean	tetractus.

The	date	was	January	19,	1595,	and	Kepler	was	lecturing	about	the	Great
Conjunctions	that	occur	when	Jupiter	and	Saturn,	as	viewed	from	the	Earth,
appear	to	pass	each	other.	This	does	not	happen	often	in	anyone’s	lifetime,	for
Jupiter	overtakes	Saturn	only	approximately	every	twenty	years.	Imagine	the
two	planets	moving	on	a	great	circular	belt	around	the	Earth.	During	the	twenty-
year	interval	between	two	Great	Conjunctions,	Saturn	moves	about	two	thirds	of
the	way	around	the	belt,	while	Jupiter	makes	one	complete	revolution	and	two
thirds	of	another.	The	locations	of	the	Great	Conjunctions	leap	forward	on	the
belt	by	two	thirds	of	the	circle	every	twenty	years.

Kepler	had	drawn	a	circle	on	the	chalkboard	to	represent	the	great	circle	of
the	zodiac	belt,	and	then	marked	the	points	in	the	zodiac	where	the	successive
Great	Conjunctions	occurred,	viewed	from	Earth.	If	one	plotted	only	three	Great
Conjunctions,	those	points	were	very	near	to	being	the	corners	of	an	equilateral
triangle,	but	not	quite.	Beginning	another	triangle	where	the	first	ended	(plotting
the	next	conjunctions),	the	new	triangle	did	not	precisely	retrace	the	first	one.
For	example,	the	fourth	conjunction	in	Kepler’s	drawing	(the	conjunction	that
occurred	in	the	year	1643)	happened	at	almost	the	same	point	as	the	first	(in
1583),	and	the	fifth	at	almost	the	same	point	as	the	second.	Draw	lines
connecting	them	and	you	almost	have	an	equilateral	triangle	.	.	.	but,	again,	not
quite,	and	you	have	not	retraced	the	first	triangle.	So	the	triangle	“rotates,”	as
Kepler’s	diagram	shows.	The	result	is	two	circles,	outer	and	inner,	with	the
distance	between	them	set	by	the	rotating	triangle.	Thus,	Kepler’s	triangle
seemed	to	be	mysteriously	dictating	the	distance	between	the	orbits	of	the	first
two	planets.	Interestingly,	the	radius	of	the	inner	circle	looked	as	though	it	were
half	that	of	the	outer	circle,	and	observations	of	the	heavens	showed	that	the
radius	of	Jupiter’s	orbit	was	approximately	half	the	radius	of	Saturn’s.



Drawing	from	Kepler’s	Mysterium	cosmographicum	depicting	the	pattern	of	Jupiter-Saturn
conjunctions	and	where	they	happened	in	the	zodiac.	The	conjunction	in	1583	(right)	occurred	when
the	two	planets	were	in	Aries/Pisces.	The	conjunction	in	1603	(lower	left)	was	in	Sagittarius,	in	1623
in	Leo,	in	1643	in	Aries,	in	1663	in	Sagittarius,	and	so	on.	If	the	conjunctions	occurred	repeatedly	in
the	same	positions	in	the	zodiac,	Kepler’s	drawing	would	have	looked	like	the	insert	(upper	right).
Instead	they	“progress,”	as	represented	in	the	central	figure.

An	amazed	Kepler	decided	immediately	to	try	the	next	regular	polygon—the
square	(the	triangle	has	three	sides,	the	square	four)—to	see	whether	it	would
serve	similarly	for	the	separation	between	the	orbits	of	Jupiter	and	Mars.*	If	it
did,	he	planned	to	try	a	pentagon	(five	sides)	for	the	separation	between	the
orbits	of	Mars	and	Earth,	a	hexagon	for	Earth	and	Venus,	and	so	forth.	He	hoped
the	arrangement	of	the	cosmos	would	resemble	this	diagram,	with	the	triangle,
then	the	square,	then	the	pentagon,	then	the	hexagon,	and	so	forth,	all	nested
between	the	separate	planetary	orbits.	The	idea	failed	on	the	first	try,	when	the
square	would	not	work	for	the	known	separation	between	the	orbits	of	Jupiter
and	Mars.



Kepler	experimented	with	other	regular	polygons,	searching	for	a	fit,	but	he
realized	that	given	the	infinite	number	of	polygons	available,	success	was
assured.	To	the	early	Pythagoreans,	this	might	have	seemed	adequate.	Not	to
Kepler,	for	the	question	remained,	why—among	all	the	possibilities—these
particular	polygons	worked	and	not	others.	Why	had	God	chosen	to	construct	the
universe	in	this	way	and	not	in	some	other?

Though	many	of	his	contemporaries	considered	questions	like	these	naive,
they	bothered	Kepler,	who	had	already	been	focusing	his	thinking	along	two
lines	of	investigation:	what	reasoning	God	was	using	when	he	made	things	the
way	they	are;	and	the	physical	reasons	why	the	universe	operates	as	it	does.
Clearly,	for	Kepler,	shuffling	through	all	the	polygons	and	finding	five	that	fit
neatly	between	the	six	planetary	orbits	was	not	satisfactory.	Since	there	were
regular	polygons	to	fit	any	planetary	distances	one	might	find,	he	felt	there	had
to	be	a	scheme	that	would	limit	the	actual,	possible	ratios	(Saturn	to	Jupiter,
Jupiter	to	Mars,	Mars	to	Earth,	Earth	to	Venus,	Venus	to	Mercury),	accounting
for	why	some	ratios,	not	others,	existed	in	the	heavens	and	there	were	only	six
planets.

It	occurred	to	Kepler	that	he	was	making	a	mistake	in	trying	to	apply	two-
dimensional,	flat	figures	(polygons)	to	a	three-dimensional	universe,	and	he
decided	to	experiment	instead	with	solid	figures,	the	regular	polyhedra.*	That
thought	was	a	Pythagorean	knockout.	There	were,	after	all,	only	five	regular
polyhedra	(the	Pythagorean	or	Platonic	solids)	not	an	infinite	number	of
possibilities.	To	Kepler’s	immense	satisfaction,	he	found	he	could	fit	the	five
polyhedra	into	a	nested	arrangement	that	quite	nicely	coincided	with	the	known
separations	between	the	six	“spheres”	in	which	the	planets	orbit.†

Any	of	the	five	regular	polyhedra—cube,	tetrahedron	(pyramid),	octahedron,



Any	of	the	five	regular	polyhedra—cube,	tetrahedron	(pyramid),	octahedron,
icosahedron,	and	dodecahedron—can	be	set	inside	a	sphere	so	that	each	of	its
points	touches	the	sphere;	and	a	smaller	sphere	can	be	set	inside	any	polyhedron
so	that	it	touches	the	center	of	each	side	of	the	polyhedron.	This	was	almost
certainly	what	was	meant	by	the	cryptic	words	of	the	Philolaus	fragment:	“The
bodies	in	the	sphere	are	five.”	So	Kepler	pictured	the	solids	nesting	among	the
planetary	spheres,	giving	the	separation	between	them	just	as	the	triangle	had
seemed	to	give	the	separation	between	the	orbits	of	Jupiter	and	Saturn	in	his
drawing	on	the	chalkboard.	This	“polyhedral	theory”	appears	to	have	been
completely	original	with	Kepler.

Despite	Kepler’s	conviction	that	there	were	deep,	harmonious	connections
in	nature,	and	his	hope	that	he	had	found	a	stunning	example,	there	was	a	side	to
his	intellectual	makeup	that	set	him	apart	from	the	Pythagoreans	who	had
decided	there	must	be	ten	bodies	in	the	cosmos.	He	did	not	merely	assume	that
the	universe	must	surely	fit	his	beautiful	geometrical	scheme	without	testing	it
against	Copernican	theory	and	the	available	observational	records	“to	see
whether	this	idea	would	agree	with	the	Copernican	orbits,	or	if	my	happiness
would	be	carried	away	by	the	wind.”	Though	the	need	for	such	a	testing
procedure	seems	obvious	today,	it	did	not	to	those	who	studied	nature	in	the
sixteenth	century.	Kepler	was,	in	fact,	feeling	his	way	into	the	process	that
would	later	be	dubbed	the	scientific	method.

Kepler’s	polyhedral	theory	drawing,	from	his	Mysterium	cosmographicum,	showing	his	nesting



arrangement	of	the	six	planetary	spheres	and	the	five	Pythagorean/Platonic	solids

Given	that	there	are	eight	or	nine	planets	orbiting	the	Sun,*	not	only	the	six
known	in	Kepler’s	time,	and	that	his	polyhedral	theory	has	turned	out	to	be	quite
off	the	wall,	it	is	astonishing	to	read	Kepler’s	exclamation	that	“within	a	few
days	everything	worked,	and	I	watched	as	one	body	after	another	fit	precisely
into	its	place	among	the	planets.”	He	knew,	however,	that	there	were	better
observations	than	those	he	was	using.	Those	undertaken	by	the	older	Danish
astronomer	Tycho	Brahe	were	far	more	precise.	Tycho	was	a	reputedly	arrogant,
supremely	talented	man	whose	nose,	it	was	widely	known,	had	been	partially
hacked	off	in	a	youthful	duel	and	reconstructed	out	of	gold	and	silver.
Unfortunately	for	Kepler,	Tycho	was	behaving	like	a	new	Pythagoras	or
Copernicus:	He	was	keeping	his	findings	to	himself	and	refusing	to	publish
them.

Kepler	finished	writing	Mysterium	cosmographicum,	his	book	about	the
polyhedral	theory,	in	the	winter	of	1595–96,	and	it	came	off	the	press	in	1597.
When	he	was	an	old	man,	Kepler	would	reminisce	that	this	small	volume	with
the	long	title	(the	complete	title	required	about	six	lines	of	print)	was	the	point	of
departure	for	the	path	his	life	would	take	from	that	time	forward.	He	could,	with
some	justice,	have	said	the	same	with	regard	to	its	watershed	significance	for	the
whole	of	science.	As	the	eminent	historian	of	science	Owen	Gingerich	has
commented,	“Seldom	in	history	has	so	wrong	a	book	been	so	seminal	in
directing	the	future	course	of	science.”

The	game	was	now	afoot	in	earnest.	The	polyhedral	theory	was	not	a	dead
end,	and	the	reason	was	that	Kepler—Platonist	and	Pythagorean	when	it	came	to
his	faith	in	harmony	and	symmetry—was	a	thoroughgoing	Aristotelian	when	it
came	to	his	respect	for	down-to-earth,	or	at	least	visible-from-Earth,
observational	data.	He	first	tried	to	approach	Tycho	soon	after	Mysterium’s
publication,	but	it	was	a	truly	labyrinthine	four-year	trail	of	events	that	finally
brought	him	to	the	moment	when	Tycho’s	logbooks	lay	open	before	him.
Meanwhile	Kepler	set	off	in	another	even	more	Pythagorean	direction.

KEPLER	MENTIONED	MUSIC	in	Mysterium	only	once,	noting	that	just	as	there	were
five	regular	solids	in	geometry,	so	there	were	five	harmonic	intervals	in	music.
He	was	counting	more	than	the	octave,	fourth,	and	fifth	of	the	Pythagoreans.
Kepler	had	begun	to	give	himself	a	thorough	grounding	in	music	theory.	In	his
own	musical	calculations,	he	decided	to	use	what	is	known	as	“just”	tuning,
rather	than	“Pythagorean”	tuning.	Pythagorean	ideas	about	harmony,	based	on
the	ratios	among	the	numbers	1,	2,	3,	and	4,	considered	only	the	intervals	of	the



octave,	fifth,	and	fourth	as	being	consonant.	In	“just”	tuning,	more	commonly
used	in	Kepler’s	day,	as	it	still	is,	major	and	minor	thirds	and	sixths	were	also
recognized	as	pleasing	to	the	ear.*	Kepler	thought	the	addition	of	these	intervals
was	a	great	improvement	over	the	music	of	the	ancients,	and	it	was	a	rare
musician	or	listener	of	his	era	(or	later)	who	would	not	have	agreed.

His	comment	was	no	musical	theory	of	astronomy,	but	in	1599,	two	years
after	the	publication	of	Mysterium,	Kepler	mentioned	some	ideas	about	the
harmony	of	the	spheres	in	letters	he	wrote,	first	to	an	Englishman	in	Padua	who
he	hoped	would	pass	his	idea	along	to	Galileo,	and	then	to	his	patron	Herwart
von	Hohenburg	and	his	old	mentor	Michael	Mästlin	in	Tübingen.	Kepler’s
proposal	was	not	exactly	the	same	in	all	three	letters,	for	his	thoughts	were
developing	rapidly	regarding	a	question	he	had	raised	in	Mysterium:	Why	does
each	planet	take	the	time	it	does	to	orbit	the	Sun?	Sure	that	planets	farther	from
the	Sun	actually	move	more	slowly	and	are	not	merely	handicapped	by	being
assigned	an	outer	lane	in	the	race,	he	was	pondering	what	logic	might	lie	behind
the	planets’	different	distances	from	the	Sun	and	their	different	velocities.

Kepler	thought,	as	the	Pythagoreans	and	others	had	before	him,	that	the
planets,	moving	through	something	like	air,	must	produce	a	sound,	just	as	the
strings	of	a	musical	instrument	would	if	hung	in	a	breeze,	and	he	believed	the
sound	was	harmonious.	Only	two	people	had	anticipated	Kepler’s	precise
linking	of	music	and	planetary	movement:	John	Scotus	Eriugena,	in	the	ninth
century,	and	Giorgio	Anselmi	of	Parma,	in	the	early	fifteenth.2	Eriugena	had
recognized	that	if	you	associated	a	musical	pitch	with	a	planet,	and	if	pitch
depended	on	the	planet’s	distance	from	the	Earth,	then	you	had	to	include	in
your	theory	the	way	the	pitch	would	change	as	a	planet	moved	and	changed	its
distance—which	planets	clearly	did,	especially	in	Eriugena’s	arrangement	with
some	of	the	planets	orbiting	the	Sun.	Anselmi	had	not	imagined	each	planet	as
having	an	individual	tone	but	rather	as	singing	its	own	melody	in	counterpoint
with	the	others.	In	devising	his	eight-octave	planetary	scale,	he	had	taken	into
consideration	the	planets’	orbital	periods.	The	result	was	a	great	cosmic
symphony.

In	1599,	Kepler	was	considering	the	possibility	that	the	velocities	(in	his
word,	the	“vigor”)	of	the	six	planets	might	be	related	to	one	another	in	the	same
relationships	that	would	produce	a	harmonious	chord	if	translated	into	lengths	of
strings	on	a	musical	instrument.	For	example,	a	relationship	of	3:4	between	the
velocities	of	Saturn	and	Jupiter,	used	as	the	relationship	between	two	string
lengths,	would	produce	the	interval	of	the	fourth.	So	one	could	think	of	the
“interval”	between	Saturn	and	Jupiter	as	a	musical	fourth.	Kepler	calculated	the



proportions	of	the	velocities	of	the	planets	as	3:4	for	Saturn	to	Jupiter,	4:8	(1:2)
for	Jupiter	to	Mars,	8:10	(4:5)	for	Mars	to	Earth,	10:12	(5:6)	for	Earth	to	Venus,
and	12:16	(3:4)	(Venus	and	Mercury).	Translating	those	ratios	into	musical
intervals,	he	worked	out	a	chord	composed	of	(starting	from	the	lowest	note)
intervals	of	a	fourth,	an	octave,	a	major	third,	a	minor	third,	and	another	fourth.
In	modern	notation,	an	example	of	this	chord	would	be:

Kepler’s	1599	planetary	chord

Kepler	had	chosen	the	velocities	with	the	aim	of	having	a	harmonious	chord,
and	now	he	found	that	by	doing	so	he	had	produced	musical	intervals	that	were
close	to	the	spatial	intervals	between	the	planets	in	his	polyhedral	theory.	The
planetary	orbital	periods	had	been	well	known	since	antiquity,	so	he	was	able	to
proceed	to	calculate	how	large	the	different	orbits	had	to	be	in	relation	to	one
another	if	the	planets,	with	these	known	periods,	were	traveling	at	the	velocities
his	musical	intervals	predicted.	He	compared	the	results	with	the	orbital	sizes
calculated	from	Copernican	theory	and	found	that	his	harmonic	theory	was	in
somewhat	better	agreement	than	his	polyhedral	theory.

Kepler’s	own	summation	of	what	he	had	learned	from	each	theory	was	that
with	the	harmonic	theory	he	could	calculate	the	planets’	distances	from	the	Sun,
relative	to	one	another;	and	with	the	polyhedral	theory	he	could	calculate	the
thickness	of	the	empty	spaces	between	the	spheres	in	which	the	planets	orbited.

Kepler	wrote	to	Mästlin	that	he	had	found	a	clever	way	to	connect	his
polyhedral	theory	to	three	of	the	five	intervals	in	his	chord.	The	cube	was	the
polyhedron	that	separated	the	orbits	of	Saturn	and	Jupiter.	Three	flat	squares
meet	at	each	corner	of	a	cube,	and	the	corner	of	each	of	the	three	squares	is	a	90-
degree	angle.	Add	those	three	90-degree	angles	together	and	you	get	270
degrees.	The	ratio	between	270	and	360	(the	number	of	degrees	in	a	complete
circle)	is	3:4.	It	seemed	appropriate	that	the	musical	interval	(the	fourth)	that



required	the	ratio	of	string	lengths	3:4	was	the	one	that	defined	the	space	interval
between	Saturn	and	Jupiter.	Kepler	found	similar	relationships	working	for	the
intervals	between	Jupiter	and	Mars,	and	Earth	and	Venus.

Kepler	thought	that	he	had	made	good	progress	with	his	harmonic	theory,
and	that	the	harmony	he	was	discovering	reflected	the	mind	of	the	Creator	and
was	surely	carried	out	in	the	cosmos.	He	confided	to	Mästlin	and	von
Hohenburg,	late	in	the	summer	of	1599,	that	he	felt	as	though	he	had	“a	bird
under	a	bucket.”	He	was	soon	writing	to	von	Hohenburg	that	he	was	planning	a
work	titled	Harmonice	mundi.

When	von	Hohenburg	wrote	expressing	concern	that	the	numbers	were	not
really	a	fit,	and	that	the	theory	was	perhaps	based	on	suspicion	and	not	really
demonstrated,	Kepler	replied:

First,	I	think	that	aside	from	a	few	propositions,	I	have	proposed
not	an	ironclad	demonstration	but	one	which	nevertheless	stands,
in	the	absence	of	contrary	argument.	Second,	the	suspicion	is	not
entirely	false.	For	man	is	the	image	of	the	Creator,	and	it	may	be
that	in	certain	matters	pertaining	to	the	adornment	of	the	world
the	same	things	appear	to	man	as	to	God.

His	own	ideas	of	harmony,	he	believed,	were	in	synchrony	with	the	Creator’s;
the	remaining	difficulties	in	his	theories	would	not	be	difficult	to	overcome,	and
he	would	soon	have	them	solved.	He	had	little	idea	of	the	arduous	intellectual
journey	that	lay	before	him,	or	that	twenty	years	would	pass	before	he	arrived	at
the	great	“harmonic	theory”	that	would	continue	to	be	regarded	as	correct	in	the
twenty-first	century.

In	August	1599,	von	Hohenburg	mentioned	in	a	letter	to	Kepler	an	opinion
of	Ptolemy	on	the	number	of	consonant	intervals	there	were	in	music.	Kepler
eagerly	wrote	back	to	say	that	if	Ptolemy’s	book	would	not	overburden	the
messenger,	he	very	much	hoped	von	Hohenburg	would	send	it.	In	two	more
letters	he	continued	to	ask,	and	in	July	1600,	von	Hohenberg	finally	complied.
The	book	was	a	poor	Latin	translation	of	Ptolemy’s	Harmonics,	and	Kepler	later
complained	that	he	could	hardly	make	sense	of	it.	Nevertheless,	it	amazed	him
that	Ptolemy’s	speculations	were	not	far	different	from	his	own,	though	“to	be
sure,	much	was	still	lacking	in	the	astronomy	of	that	age;	and	Ptolemy,	having
begun	badly,	could	plead	desperation.	Like	the	Scipio	of	Cicero,	he	seems	to
have	recited	a	kind	of	Pythagorean	dream	rather	than	advancing	philosophy.”3

The	late	summer	and	autumn	of	1600,	when	Kepler	was	first	reading	the



Harmonics,	was	not	a	convenient	moment	to	consider	harmonic	theories	more
deeply.	The	previous	winter,	Kepler	had	joined	Tycho	Brahe	at	Benatky	Castle
near	Prague,	where	the	imperious	astronomer	was	then	in	residence	under	the
patronage	of	the	Holy	Roman	Emperor	Rudolph	II.	Kepler	had	arrived
anticipating	a	fruitful	collaboration	and	thinking	that	his	hopes	of	being	able	to
consult	Tycho’s	phenomenal	astronomical	data	were	about	to	be	realized.
Instead	he	had	found	himself	having	to	cope	with	a	difficult,	paranoid,	secretive
old	man	who	treated	him	more	like	an	untrustworthy	and	unpaid	servant	than	a
collaborator	and	would	allow	him	only	tantalizing,	inadequate	glimpses	of	the
precious	data.	Tycho’s	longing	to	gain	immortality	with	his	own	Tychonic
system	made	him	highly	suspicious	of	young	Kepler,	who	openly	preferred	the
Copernican	system.*	Kepler’s	hope	of	improving	his	financial	situation	had	sent
him	on	a	fruitless	journey	back	to	Graz,	seeking	a	continuance	of	his	salary	as
District	Mathematician	(in	absentia)	there.	But	in	the	summer	Kepler	found
himself	not	better	off	but	worse.	His	health	was	failing,	and	a	drastic	turn	in	the
Counter-Reformation	in	Catholic	Graz	suddenly	made	him	a	penniless	Protestant
refugee.	Reluctantly,	when	all	other	possibilities	failed	(including	an	appeal	to
his	old	mentor	Michael	Mästlin	for	a	job	at	Tübingen)	he	settled	with	his
frightened	family	in	Prague,	even	more	at	the	mercy	of	Tycho	Brahe	than	before.
Kepler	set	aside	Ptolemy’s	book	and	his	own	ideas	about	harmony,	but	only
temporarily.	He	had	meanwhile	not	by	any	means	abandoned	his	polyhedral
theory.	For	him,	that	theory,	his	studies	of	the	harmony	of	the	spheres,	his	great
revision,	later,	of	all	of	astronomy	in	the	light	of	Tycho’s	observations—and
much	else—were	not	isolated,	disconnected	efforts.	They	were	all	part	of	a	unity
of	thought	and	work.

By	January	1607,	the	wheel	of	fortune	had	turned	again	for	Kepler.	Tycho
had	died	in	the	autumn	of	1601,	and	Kepler	had	been	the	heir	to	Tycho’s
position	and	duties	in	Rudolph’s	court.	With	Tycho’s	observational	logs	finally
lying	open	before	him	(albeit	with	Tycho’s	relatives	all	too	ready	to	snatch	them
away	and	intermittently	succeeding)	Kepler	had	spent	more	than	half	a	decade
beating	his	brains	over	this	data	and	his	own	calculations,	using	all	the
mathematical	skill	he	could	muster	and	inventing	new	mathematics	to	work	out
the	true	orbit	of	Mars.	At	one	desperate	point	he	had	been	almost	ready	to
relinquish	his	Pythagorean	faith	and	admit	that	the	orbit	of	Mars	simply	did	not
make	mathematical	sense	at	all.	He	had	even	taken	issue	with	God	about	it,	in
words	he	might	have	used	to	express	disappointment	about	a	human	colleague:
“Heretofore	we	have	not	found	such	an	ungeometrical	conception	in	his	other
works!”



Yet	eventually	the	universe	and	the	Creator	had	turned	out,	in	an	unexpected
way,	to	have	lived	up	to	Pythagorean	standards	after	all.	The	planetary	orbits,
Kepler	discovered,	were	elliptical,	not	circular,	and	with	that	hard-won
realization	everything	fell	into	place.	Kepler	had	been	able	to	engineer	an	entire
revision	of	astronomy	in	the	light	of	Copernican	theory	and	his	own.	He	had
found	precisely	how	a	planet’s	velocity	changes	as	it	moves	closer	to	and	farther
away	from	the	Sun	in	its	orbit.	He	had	painstakingly	chronicled	his	“war	with
Mars”	and	stated	his	first	two	laws	of	planetary	motion	in	his	book	Astronomia
nova,	and	had	sent	to	press	the	manuscript	for	this	great	work	that	was	the	fruit
of	his,	and	Tycho’s,	labors.*	The	book	would	win	Kepler	immortality.	The
campaign	that	had	begun	in	Denmark	at	Uraniborg	when	Tycho	first	decided	to
train	his	fabulous	instruments	on	Mars	was	over,	and	Kepler	had	awarded	the
victory	to	Copernicus,	not	to	Tycho	or	Ptolemy.	Even	so,	Kepler	still	clung	to
his	polyhedral	theory	as	possibly	being	the	underlying	logic	of	the	solar	system,
though	he	now	knew	that	it	could	not	account	for	all	the	proportions.

That	January,	1607,	a	letter	arrived	from	von	Hohenburg.	He	was	trying	to
find	a	copy	of	Ptolemy’s	Harmonics,	evidently	having	forgotten	that	he	had	sent
a	copy	of	that	very	book	to	Kepler	six	and	a	half	years	earlier.	Kepler	reminded
him	of	that	previous	gift	but	asked	whether	he	would	now	please	find	him	a	copy
in	the	original	Greek.

In	March,	the	book	arrived.	It	included	commentaries	by	Porphyry	and	the
fourteenth-century	monk	Barlaam	of	Seminara	(the	man	who	had	tried
unsuccessfully	to	teach	Petrarch	Greek).	Barlaam	argued	that	the	text	appearing
as	Ptolemy’s	last	three	chapters	was	not	authentic.	This	was	particularly
disappointing	to	Kepler,	who	was	sure	that	it	was	in	those	very	chapters	that
Ptolemy	must	have	showed	how	to	use	harmonic	principles	to	derive	the
parameters	of	his	planetary	models.	Kepler	made	plans	to	publish	an	edition	of
Harmonics	in	Greek	with	his	own	commentary,	in	which	he	would	explain	and
then	refute	Ptolemy’s	theories,	then	compare	them	with	his	own.	He	also
planned	to	undertake	a	new	Latin	translation.	In	the	table	of	contents	for	the	final
volume	of	his	Harmonice	mundi,	he	listed	the	commentary	and	also	an	appendix
of	about	thirty	pages,	translating	what	he	felt	were	the	most	relevant	parts	of
Ptolemy’s	book	and	re-creating	Ptolemy’s	text	in	the	suspect	chapters.	But	when
Harmonice	mundi	appeared	in	1619,	the	actual	appendix	included,	instead,	only
an	apology	that	the	promised	material,	begun	ten	years	earlier	but	interrupted	by
a	move	from	Prague	to	Linz	“combined	with	many	other	troubles,”	was	not
there.

“Many	other	troubles”	was,	sadly,	an	understatement.	Soon	after	New



Year’s,	1611,	Kepler’s	three	children	had	contracted	smallpox.	His	six-year-old
son,	Friedrich,	who	had	been	a	particular	delight	to	Kepler,	died.	Troops	led	by	a
cousin	of	Kepler’s	patron,	Emperor	Rudolph	II,	overran	Prague	and	rioted	with
vigilantes	in	the	streets	surrounding	Kepler’s	house.	Rudolph,	always	an
exceedingly	eccentric,	reclusive	ruler,	and	by	then	somewhat	over	the	brink	of
madness,	abdicated	the	throne.	Kepler’s	wife	died	of	a	fever	that	July,	and
Rudolph	himself	expired	the	next	winter.	Even	before	the	emperor’s	death,
Kepler	had	foreseen	the	end	of	his	usefulness	in	Prague	and	had	accepted	a
position	as	teacher	and	district	mathematician	in	Linz—a	job	on	about	the	level
of	the	one	in	which	he	had	begun	his	career	seventeen	years	before	in	Graz.
Though	he	was	widely	known	and	respected,	famous	for	his	Astronomia	nova,
nothing	better	was	available	because	of	an	earlier	statement	still	on	record	that
he	had	made	and	would	not	recant,	that	he	believed	a	Calvinist	also	was	a
“brother	in	Christ.”	That	opinion	disqualified	him	from	any	position	at	a
Lutheran	university.	His	salary	as	imperial	mathematician	continued,
theoretically,	but	in	reality	he	was	still	trying	to	collect	years	of	back	pay	from
the	undependable	imperial	treasury.	If	all	of	that	had	not	been	enough	to	distract
him,	he	found	it	imperative,	with	two	motherless	children,	to	look	for	a	new
wife,	and	he	remarried	about	two	years	after	his	first	wife’s	death.	In	December
1615,	disaster	struck	again.	His	mother	was	accused	of	witchcraft.	In	the	next
three	years,	while	he	defended	her	and	struggled	to	keep	his	own	reputation	from
being	destroyed	in	the	process,	he	and	his	new	wife	lost	two	infant	daughters	and
also	his	much	loved	stepdaughter,	the	daughter	of	his	first	wife	by	a	previous
marriage.

In	the	winter	of	1618,	Kepler	was	too	distracted	with	grief	to	concentrate	on
tedious	calculations	needed	for	the	Rudolfine	Tables—astronomical	tables	based
on	Tycho’s	observations,	on	which	Kepler	had	been	working	intermittently	for
many	years.	“Since	the	Tables	require	peace,”	he	wrote,	“I	have	abandoned	them
and	turned	my	mind	to	developing	the	Harmony.”	In	Astronomia	nova,	he	had
completely	reconstructed	astronomy,	and	this	meant	not	only	that	the	harmony
project	had	taken	on	much	greater	proportions	but	also	that	Kepler	had	a	much
stronger	and	more	comprehensive	foundation	on	which	to	work.	He	was	now
dealing	with	what	he	knew	to	be	a	real	planetary	system,	whose	mathematics	and
geometry	he	understood	better	than	anyone	else	alive.

“The	Harmony”	referred	to	the	book	he	had	barely	begun	in	Graz	when	he
had	first	considered	linking	the	velocities	of	the	planets	with	musical	harmony
and	had	shared	his	thoughts	with	von	Hohenburg	and	Mästlin.	That	period	of
Kepler’s	life	had	also	been	a	time	of	mourning,	for	the	death	of	his	first	and



second	child.	Now	tragedy	had	again	decimated	his	family,	and	there	must	have
seemed	little	evidence	of	a	rational,	loving	God,	but	Kepler	turned	again	to	the
effort	to	reveal	what	he	believed	was	God’s	marvelous	wisdom	and	rationality	to
be	discovered	in	nature.

When	Kepler	began	laying	out	the	table	of	contents	for	the	book	that	would
be	Harmonice	mundi,	he	decided	the	moment	had	come	to	revive	his	plans	to
translate	Ptolemy’s	Harmonics.	Then	the	Thirty	Years	War	broke	out	and	the
scarcity	of	manpower	made	it	impossible	to	get	material	printed.	Not	until	1864,
more	than	two	centuries	after	his	death,	did	an	edition	of	Harmonice	mundi
appear	that	included	his	Latin	translation	of	Ptolemy’s	Harmonics.	It	had
survived	in	manuscript	form.

Nevertheless,	in	1618,	Kepler	was	well	acquainted	with	Ptolemy’s
Harmonics	and	had	also	researched	what	Aristotle	and	Pliny	had	written,
centuries	before	Ptolemy,	about	the	Pythagoreans.	He	decided	that	Ptolemy	must
have	been	trying	to	describe	and	improve	on	Pythagorean	teachings	about	the
harmony	of	the	heavens	but	had	not	made	it	clear	what	those	teachings	had
been.4	Kepler	chose	to	accept	Pliny’s	opinion	that	Pythagoras	had	assigned	a
musical	pitch	to	each	of	the	eight	heavenly	bodies	(five	planets,	stars,	Moon,
Sun)	and	linked	the	distances	between	them	with	distances	(intervals)	between
those	pitches.	Kepler	concluded	that	the	Pythagorean	heavenly	scale	must	have
begun	with	the	Moon,	not	the	Earth,	because	in	an	Earth-centered	cosmos	Earth
would	not	move,	and	a	body	at	rest,	making	no	sound,	has	no	pitch	associated
with	it.	It	is	something	of	a	mystery	why	he	thought	that	Pythagoras	would	have
visualized	an	Earth-centered	cosmos.	Copernicus	had	used	the	Pythagorean
concept	of	a	central	fire	as	a	precedent	for	his	own	rearrangement	of	the	cosmos,
and	Kepler	too	liked	to	point	to	that	precedent.	He	had	read	about	it	in
Aristotle’s	De	Caelo.	Perhaps	he	believed	the	central	fire	was	an	idea	from	later
Pythagoreans,	for	example	Philolaus,	and	that	Pythagoras	himself	must	have
treated	the	Earth	as	the	unmoving	center.

Kepler	based	his	own	reconstruction	of	the	scale	Pythagoras	had	used	on	the
Pythagorean	reverence	for	the	intervals	of	the	fourth	and	fifth	and	on	the
intervals	Pliny	had	chosen.	In	Kepler’s	reconstruction,	the	Moon	was	A,
Mercury	B	flat,	Venus	B,	Sun	D,	Mars	E,	Jupiter	F,	Saturn	F	sharp,	the	stars	A.
The	first	four	notes	(A,	B	flat,	B,	D)	were	separated	by	intervals	of	a	half	step,	a
half	step,	and	a	step	and	a	half.	The	second	four	(E,	F,	F	sharp,	A)	were
separated	by	that	same	sequence	of	intervals.*	The	two	groups	were	separated
by	a	whole	step	(D	to	E,	or	Sun	to	Mars),	and	that	whole	step	was	between	the
fourth	and	fifth	of	the	scale,	two	significant	Pythagorean	notes	because	they



reflected	the	ratios	3:4	and	2:3.

Kepler’s	reason	for	deciding	that	Pythagoras	had	associated	the	lowest	note
with	the	nearest	heavenly	body,	the	Moon,	rather	than	start	his	scale	on	the	most
distant	body,	was	that	he	thought	Pythagoras,	observing	the	sky,	would	have
seen	the	higher,	more	distant	planets	appear	to	be	moving	faster	than	the	lower
ones	and	would	not	have	realized	that	one	component	of	that	movement	was	the
rotation	of	the	Earth	itself.	The	entire	sky	appears	to	rotate	westward,	making
one	complete	rotation	every	twenty-four	hours,	while	each	planet	moves	in	a
motion	contrary	to	that.	The	result	of	the	combined	motion	is	to	fool	an	observer
into	thinking	that	the	more	distant	planets	(actually	the	slowest	moving)	are
moving	fastest.*	Again,	Kepler	must	have	been	trying	to	work	out	what
Pythagoras	himself	would	have	thought,	not	later	Pythagoreans,	who	probably
did	understand	that	the	observed	motion	of	a	planet,	the	Sun,	or	the	Moon,	was
the	combination	of	two	motions.	Scholars	still	regard	this	understanding	as	one
of	the	triumphs	of	early	Greek	astronomy,	probably	coming	from	the
Pythagoreans.5	When	Kepler	got	around	to	constructing	his	own	planetary	scales
and	chords,	he	had	Saturn,	not	the	Moon,	sounding	the	lowest	note.

Having	reconstructed	what	he	believed	might	have	been	the	actual
Pythagorean	scale,	Kepler	set	it	beside	Ptolemy’s	and	considered	which	he
preferred.	Both	suffered	from	having	an	Earth-centered	cosmos	in	mind.	But
Kepler	was	fond	of	Pythagoras’	scale—“altogether	more	elegant	and	richer	in
mysteries”	than	Ptolemy’s—because	it	seemed	to	him	to	give	more	importance
to	the	planets’	motions.	On	the	other	hand,	he	gave	Ptolemy	points	for	having
recognized	that	there	must	be	a	“divine	axiom”	that	determined	the	number	and
sizes	of	the	spheres.

Before	Kepler	could	decide	for	himself	what	the	harmony	of	the	heavens
might	be,	and	what	ratios	might	underlie	it,	he	had	to	determine	which	intervals
were	agreeable	to	the	human	ear.	He	took	a	great	deal	of	trouble	differentiating
between	types	of	intervals.	There	were	the	usual	octaves,	fourths,	fifths,	thirds,



and	sixths,	all	of	which	he	called	consonantia	(they	were	harmonious	when	the
two	tones	sounded	simultaneously).	Then	there	were	several	intervals	that	he
called	concinna	that	sounded	pleasant	following	one	another	in	a	melody	but	not
when	played	simultaneously.	These	included	a	“major	tone”	and	“minor	tone”
(roughly	equivalent	to	a	whole	step	and	a	half	step)	and	two	other	intervals	that
were	smaller	than	the	interval	between	adjacent	keys	on	a	piano.	Finally	there
were	three	tiny	intervals	that	Kepler	dubbed	the	“doubtful	concinna.”	They	were
not	particularly	pleasant	to	hear	under	any	circumstances.

Kepler	combined	the	intervals	into	two	kinds	of	musical	scales.	One	had	a
major	third	and	sixth	in	it	and	was	the	durus	scale,	close	to	what	we	call	the
major	scale.	(The	major	scale	beginning	on	C,	for	example,	includes	the
intervals	C	to	E	and	C	to	A.)	The	other,	with	a	minor	third	and	sixth,	was	the
mollis	scale,	close	to	what	we	call	the	minor.	(The	minor	scale	beginning	on	C,
for	example,	includes	the	intervals	C	to	E	flat	and	C	to	A	flat.)	Likewise,	chords
based	on	major	thirds	and	sixths	were	durus;	chords	based	on	minor	thirds	and
sixths	were	mollis.*	It	requires	no	musical	training	to	hear	the	difference
between	the	two	scales	or	chords	and	experience	the	emotional	effect	of	this
difference:	the	durus	(major)	is	happy	and	the	mollis	(minor)	sad.	Why	these
sounds	have	any	influence	over	human	emotions	is	still	a	mystery,	but	the	early
Pythagoreans,	had	they	known	about	thirds	and	sixths,	would	surely	not	have
been	surprised.

One	of	Kepler’s	goals	in	the	research	that	lay	behind	Harmonice	mundi	was
to	find	out	whether	two	proposals	were	true:	First,	that	certain	ratios	between
pitches	have	a	special	“nobility”	and	importance	and	are	embodied	in	the
arrangement	and	movements	of	the	solar	system.	Second,	that	the	influence	of
music	on	the	human	soul	depends	on	these	ratios.	As	the	Pythagoreans	had
known,	musical	intervals	are	the	way	mathematical	ratios	show	up	in	sound.	One
usually	encounters	written-out	music	in	the	form	of	notes	drawn	on	and	between
horizontal	lines	on	a	page,	and	seldom	does	one	realize	that	it	would	be	possible
to	write	out	the	music	more	precisely	(though	less	practically)	as	a	long	string	of
mathematical	ratios.	If	one	wrote	out	all	the	continually	shifting	mathematical
proportions	among	the	planets,	would	the	result,	played	as	music,	sound
harmonious	and	pleasing	to	human	ears?	In	Book	V,	Chapter	9	of	Harmonice
mundi,	Kepler	explained	why	he	was	convinced—after	a	prodigious	amount	of
study	and	calculation—that	the	details	of	planetary	astronomy,	the	continually
changing	speeds	and	distances	of	the	planets	in	relationship	with	one	another,
were	as	harmonious	and	pleasing	as	could	possibly	be.	He	also	showed	how	this
best-of-all-possible	harmonious	arrangements	inevitably	(even	though	God	had



created	it)	fell	a	bit	short	of	perfection.
Most	significant	for	the	history	of	astronomy,	Book	V	began	with	an	ecstatic

statement	about	discovering	the	relationship	between	the	planets’	orbital
radiuses	and	their	orbital	periods,	even	though	Kepler	had	not	yet	made	this
discovery	when	he	began	writing	his	book:

At	last	I	brought	it	into	the	light,	and	beyond	what	I	had	ever	been
able	to	hope,	I	laid	hold	of	Truth	itself:	I	found	among	the
motions	of	the	heavens	the	whole	nature	of	Harmony,	as	large	as
that	is,	with	all	of	its	parts.	It	was	not	in	the	same	way	which	I
had	expected—this	is	not	the	smallest	part	of	my	rejoicing—but
in	another	way,	very	different	and	yet	at	the	same	time	very
excellent	and	perfect.6

Kepler	felt	that	this	discovery—his	third	law	of	planetary	motion,	or	“harmonic
law”—was	so	important	that	it	was	essential	to	go	back	and	insert	those
sentences	to	let	his	readers	know	what	was	coming.	It	was	also	in	Book	V	that
he	included	a	list	giving	a	view	of	the	astonishing	mind	of	Kepler	exactly	where
he	was,	beginning	with	a	flat	statement	that	sounds	completely	unremarkable	to
modern	ears	but	was	a	block-buster	in	his	time.	The	list	included	his	three
planetary	laws,	which	are	still	celebrated	among	the	greatest	discoveries	in
astronomy,	but	also—surprisingly—his	old	polyhedral	theory.

1.	The	planets	and	Earth	orbit	the	Sun.	The	Moon	orbits	the	Earth.
2.	The	Sun	is	not	at	the	center	of	a	planet’s	orbit	[in	other	words,	planetary
orbits	are	eccentric],	meaning	that	each	planet	has	a	maximum	and
minimum	distance	from	the	Sun	and	also	passes	through	all	other
distances	between	the	maximum	and	minimum.

3.	The	five	regular	polyhedra	dictate	the	number	of	planets:	six.
4.	The	polyhedra	alone	cannot	determine	the	distance	from	the	Sun,	since	the
orbits	are	eccentric	(see	proposition	2).	Other	principles	are	needed	to
establish	the	orbits	and	the	diameters	and	the	eccentricities.

5.	A	planet’s	velocity	is	inversely	proportional	to	its	distance	from	the	Sun.
The	orbit	of	a	planet	is	an	ellipse,	and	the	Sun,	“the	source	of	motion,”	is
one	focus	of	the	ellipse.	[This	was	Kepler’s	first	law	of	planetary	motion,
which	he	had	discovered	while	writing	Astronomia	nova.]

6.	If	two	objects	move	the	same	actual	distance,	but	one	of	them	is	farther
away	than	the	other,	the	movement	of	the	one	farther	away	appears



smaller	than	the	one	nearer.	So,	if	a	planet	never	changed	its	speed,	then,
viewed	from	the	Sun,	its	motions	when	it	is	farthest	away	would	appear
smaller	than	its	motions	when	it	is	nearest.	But	a	planet	does	change	its
speed.	Its	motion	is	not	the	same	at	its	nearest	and	farthest	points,	and	the
difference	is	in	proportion	to	the	distance	from	the	Sun.	In	other	words,
the	apparent	sizes	of	the	motions	are	different	for	two	reasons:	The	actual
size	of	the	motion	is	smaller.	Distance	makes	the	size	of	the	motion	look
smaller.	So	the	apparent	sizes	of	the	motions	are	very	nearly	the	inverse
square	of	the	proportion	of	their	distances	from	the	Sun.

7.	When	it	comes	to	celestial	harmony,	it	is	motions	as	seen	from	the	Sun
that	are	important.	Motions	as	seen	from	the	Earth	are	irrelevant.

8.	The	ratio	of	the	squares	of	the	orbital	periods	of	two	planets	is	equal	to	the
ratio	of	the	cubes	of	their	average	distances	from	the	Sun.	[This	was	the
great	“harmonic	law,”	one	of	Kepler’s	most	significant	discoveries.	Kepler
made	the	discovery	as	he	was	finishing	the	book	and	came	back	and
inserted	it	in	this	list.]

9–13.	[These	have	to	do	with	applying	the	harmonic	law.	Kepler	tried	to
spell	out	more	clearly	that	the	ratio	of	the	motions	of	two	planets	as	they
draw	closer	or	move	apart,	together	with	the	ratio	of	their	periodic	times,
determine	the	extreme	distances	they	can	have	(closest	and	farthest	from
the	Sun),	and	this	determines	how	eccentric	their	orbits	are.]

Kepler	eventually	came	to	the	conclusion	that	celestial	harmony	could	not
possibly	be	audible.	There	were	no	sounds	in	the	heavens.	How	could	they	be
enjoyed?	Knowing	or	calculating	the	path	lengths	was	too	complicated	to	give
pleasure	in	an	instinctive	way.	The	harmony	of	the	cosmos	could	be	best
appreciated	from	the	Sun	itself,	in	the	visible	arcs	of	the	planetary	motions	as
they	would	be	seen	from	there.7	(Hence	number	7	in	his	list.)

Think	of	the	Sun,	with	yourself	standing	on	it,	as	being	at	the	center	of	a
huge	clock	face	with	the	planets	moving	on	large,	nearly	circular	pathways	near
the	rim	of	the	clock	face.	The	entire	orbit	of	a	planet	is	360	degrees,	all	the	way
around	the	clock.	The	distance	between	one	and	two	o’clock,	viewed	from	the
center	of	the	clock,	is	30	degrees.	You,	on	the	Sun,	see	Earth	circling	you—
though	“circling”	is	not	quite	the	right	word,	since	Earth’s	orbit	is	not	round	but
slightly	elliptical.	Earth	is	at	aphelion	(the	part	of	its	orbit	farthest	from	the	Sun
and	you).	You	watch	for	a	twenty-four-hour	period	and	find	that	Earth	has
moved	57′3″	(57	“minutes”	and	3	“seconds”).	Since	there	are	sixty	minutes	in	a
degree,	Earth	has	moved	almost	one	degree.	Suppose,	instead,	you	are	viewing



Earth	when	it	is	at	perihelion	(the	part	of	its	orbit	closest	to	the	Sun).	Now	you
find	that	Earth’s	motion	is	faster,	61′18″	in	twenty-four	hours,	more	than	1
degree.	Those	two	measurements—Earth’s	apparent	diurnal	motions	at	aphelion
(57′3″)	and	perihelion	(61′18″)—are	not	far	different	from	one	another.	Earth’s
orbit	is	not	very	eccentric.

Kepler	pondered	how	these	two	numbers	might	be	adjusted	so	as	to	produce
a	harmonious	interval	in	music.	By	changing	57′3″	to	57′28″	(a	very	small
adjustment)	he	could	make	the	interval	a	concinna,	an	interval	that	sounded
pleasant	in	a	melody	though	not	when	the	two	notes	were	played	simultaneously.
Kepler	made	similar	tiny	adjustments	for	the	other	planets’	orbits.	The	most
troublesome	was	Venus,	whose	motion	varied	so	slightly	that	its	musical	interval
was	a	diesis.	That	was	small	indeed	but	still	fell	into	Kepler’s	category	of
concinna.

Having	worked	with	each	planet	individually,	calculating	and	adjusting	the
relationship	between	its	motion	at	aphelion	and	at	perihelion,	Kepler	turned	to
studying	the	motions	of	pairs	of	planets,	and	was	pleased	to	find	fairly	good
harmony.	The	small	adjustments	necessary	could,	Kepler	wrote,	easily	be
“swallowed”	without	detriment	to	the	astronomy	he	had	constructed	using
Tycho’s	observational	data.	Again	Venus	was	a	problem,	and	so	was	Mercury,
but	their	motions	were	not	yet	well	established	anyway.

Satisfied	with	the	way	things	were	going	so	far,	Kepler	proceeded	to	assign
actual	notes	to	each	of	the	planets	at	aphelion	and	perihelion	and	found	that
when	he	built	a	scale	with	Saturn	(the	lowest	note)	at	aphelion,	the	result	was	a
durus	scale,	a	major	scale.	With	Saturn	at	perihelion	the	result	was	a	mollis
scale,	a	minor	scale.	Planetary	motion	apparently	did	involve	both	types	of	scale.
Using	other	planets	as	the	starting	note	produced	the	different	modes	used	in
ancient	music	and	church	music.*

Thus	far,	all	of	these	combinations	had	the	planets	at	the	extremes	of	their
motions,	at	aphelion	or	perihelion.	Particularly	for	the	planets	most	distant	from
the	Sun,	such	opportunities	would	actually	occur	only	rarely.	However,	if	the
planets	involved	in	the	harmony	did	not	have	to	be	at	those	extreme	positions,
the	harmonic	opportunities	were	much	more	numerous.	For	example:	With
Saturn	moving	between	the	pitches	G	and	B	(its	pitches	at	perihelion	and
aphelion)	and	Jupiter	between	B	and	D,	Kepler	found,	along	the	way,	intervals
of	an	octave,	an	octave	plus	a	major	or	minor	third,	a	fourth,	and	a	fifth.
Mercury,	the	true	coloratura	in	the	company,	offered	even	more	opportunities
because	the	difference	between	its	pitches	at	perihelion	and	aphelion	was	greater
than	an	octave,	and	it	made	that	change	in	only	forty-four	days.	The	result	was



that	Mercury	as	it	moved	along	sang	every	harmonic	interval	at	least	once	with
each	of	the	other	planets.8

As	Kepler	calculated	it,	two-note	harmonies	of	this	sort	occur	almost	every
day,	and	Mercury,	Earth,	and	Mars	even	sing	three-part	harmony	fairly	often.
Venus,	with	so	little	eccentricity	to	its	orbit,	hardly	varies	its	pitch	at	all,	making
it	a	sort	of	Johnny	One-Note	in	the	choir.	If	there	is	to	be	harmony	with	Venus,	it
must	be	when	another	planet	slides	into	harmony	with	her,	not	the	other	way
around.	Four-note	harmonies	occur	either	because	Mercury,	Earth,	and	Mars	are
in	adjustment	with	Venus’	monotone,	or	because	they	have	waited	long	enough
for	the	slow-changing	bass	voice	of	Jupiter	or	Saturn	to	ease	into	the	right	note.
“Harmonies	of	four	planets,”	wrote	Kepler,	“begin	to	spread	out	among	the
centuries;	those	of	five	planets,	among	myriads	of	years.”9	As	for	harmony
among	all	six	planets—that	grand	and	greatest	“universal	harmony”—the	chord
would	be	huge,	spanning	more	than	seven	octaves.	(You	could	not	play	it	on
most	modern	pianos.	You	would	need	an	organ.)	Kepler	thought	it	might	be
possible	for	it	to	occur	in	the	heavens	only	once	in	the	entire	history	of	the
universe.	Perhaps	one	might	determine	the	moment	of	creation	by	calculating	the
past	moment	when	all	six	planets	joined	in	harmony.	Kepler	thought	about	the
words	of	God	to	Job:	“Where	were	you	when	I	laid	the	Earth’s	foundation...
while	the	morning	stars	sang	together?”

Kepler	dared	to	move	ahead	to	what	he	felt	was	the	true	test	of	his	theory:
“Let	us	therefore	extract,	from	the	harmonies,	the	intervals	of	the	planets	from
the	Sun,	using	a	method	of	calculation	that	is	new	and	never	before	attempted	by
anyone.”10	If	you	did	not	know	the	astronomy	of	the	solar	system,	could	you
deduce	it	correctly	from	the	harmonic	scheme	he	believed	he	had	discovered?
Starting	with	the	best	harmony	and	figuring	out	what	planetary	orbits	and
motions	this	harmony	implied,	what	would	be	the	observable	consequences	of
the	cosmos’	adhering	to	this	harmony?	Kepler	used	Tycho	Brahe’s	data	for
comparison	and	concluded	that	“all	approach	very	closely	to	those	intervals
which	I	found	from	the	Brahe	observations.	In	Mercury	alone	there	is	a	small
difference.”

Kepler	proceeded	to	compare	the	solar	system	as	dictated	by	his	harmonic
scheme	with	the	solar	system	as	dictated	by	his	polyhedral	theory.	His
conclusion	was	that	the	polyhedra,	nested	in	the	way	he	had	earlier	suggested,
had	been	God’s	rather	loose	model	for	the	solar	system.	It	dictated	how	many
planets	there	would	be	and	the	approximate	dimensions	of	the	spheres	within
which	they	moved.	It	was	a	sort	of	sketch,	with	the	final	dimensions	filled	out	by
the	harmonic	proportions	among	the	planets’	apparent	motions	as	viewed	from



the	Sun.	The	concept	of	“harmonies”	was	required	to	reflect	an	eternally	fluid
system	like	that	found	among	real	planets	in	motion,	and	the	real	solar	system
could	not	be	understood	apart	from	its	motion.

Nearing	the	end	of	his	book,	Kepler	imagined	himself	drifting	off	to	sleep	to
the	strains	of	the	planetary	harmony,	“warmed	by	having	drunk	a	generous
draught	.	.	.	from	the	cup	of	Pythagoras.”11	He	is	soon	dreaming	about	pure,
simple	beings	who	might	live	on	the	Sun,	in	the	right	position	to	appreciate	the
harmony,	and	of	creatures	on	the	other	planets:	It	would	be	a	terrible	waste	if
there	were	none.	They,	like	Earth	dwellers,	have	no	way	of	appreciating	the
harmony	directly	and	can	only	learn	of	it,	as	humans	had,	by	a	combination	of
observation	and	reasoning.	Kepler	wrote	a	prayer	that	God	would	be	praised	by
the	heavens,	by	the	Sun,	Moon,	and	planets,	by	the	celestial	harmonies	and	their
beholders—“by	you	above	all,	happy	old	Mästlin,	for	you	used	to	inspire	these
things	I	have	said,	and	you	nourished	them	with	hope”—and	by	his,	Kepler’s,
own	soul.	He	ended	with	a	return	to	the	old	idea	that	was	inherent	from	the	start
in	the	Pythagorean	discovery	of	musical	ratios:	that	one	does	not	have	to	know
about	them	to	be	moved	by	music.	There	is	a	mysterious	inherent	connection
between	human	souls	and	the	underlying	pattern	of	the	universe	that	affects	us
without	our	understanding	why	or	how.	The	same	was	true,	Tycho	Brahe	had
thought,	of	the	design	of	his	palace/observatory.	Kepler	wrote:

It	does	not	suffice	to	say	that	these	harmonies	are	for	the	sake	of
Kepler	and	those	after	him	who	will	read	his	book.	Nor	indeed
are	aspects	of	planets	on	Earth	for	the	sake	of	astronomers,	but
they	insinuate	themselves	generally	to	all,	even	peasants,	by	a
hidden	instinct.12

With	modern	hindsight,	it	seems	Kepler	took	an	odd,	eccentric	road	indeed
to	arrive	at	his	great	“harmonic”	law.	He	found	it	twice,	at	first	rejecting	it
because	of	a	computational	error	on	March	8,	1618,	and	then	discovering	that	it
was	correct	a	few	weeks	later,	on	May	15.	The	comment	has	sometimes	been
made	that	the	harmonic	law	was	an	accidental	discovery	in	the	midst	of	a
labyrinth	of	worthless	musical/mathematical	speculation,	and	that	Kepler	hardly
realized	he	had	made	an	important	discovery.	But	Kepler	definitely	knew	it	was
significant.	It	was	in	response	to	this	discovery	that	he	fell	to	his	knees	and
exclaimed,	“My	God,	I	am	thinking	Thy	thoughts	after	Thee.”	Without	the
underpinning	of	modern	mathematics	and	the	modern	scientific	method,	the
convoluted	musical	path	Kepler	took	may	have	been	the	only	way	he	could	have



got	there.	After	all,	he	was	the	one	who	did	get	there.	Kepler	had	one	of	the
truest	ears	in	history	for	the	harmony	of	mathematics	and	geometry.



CHAPTER	17

Enlightened	and	Illuminated
Seventeenth–Nineteenth	Centuries

KEPLER’S	CONTEMPORARY	GALILEO	wrote	that	“Science”	was	to	be	found	“in	a
huge	book	that	stands	always	open	before	our	eyes—the	universe.”	But	to
understand	it,	one	needed	to	be	able	to	understand	the	language,	and	“the
language	is	mathematics.”1	Galileo	was	not	the	first	in	his	family	to	win	a	place
in	history.	His	father,	Vincenzo,	appears	in	textbooks	of	music	history	as	a
prominent	musician	of	the	sixteenth	century—a	composer,	one	of	the	best	music
theorists	of	his	time,	and	a	fine	lutenist.	One	of	his	areas	of	research	was	ancient
Greek	music,	and	there	is	a	story	that	when	he	read	Boethius’	De	musica,	the
account	of	Pythagoras	hanging	weights	on	lengths	of	string,	plucking	the	strings,
and	discovering	the	ratios	of	musical	harmony	piqued	his	curiosity.2	Amazingly,
no	records	survive,	from	all	the	prior	centuries	during	which	scholars	had	been
reading	Boethius,	of	anyone	trying	this	to	see	whether	it	would	work.	Vincenzo
discovered,	of	course,	that	it	did	not,	but	he	went	on	experimenting	with	the
physics	of	vibrating	strings.	When	his	son	watched	a	lamp	swinging	in	the	Pisa
cathedral	and	first	decided	to	experiment	with	pendulums,	perhaps	he	had	in
mind	his	father’s	tests	with	weights	and	strings.

Two	decades	later,	the	younger	Galileo,	though	largely	oblivious	to	the	work
Kepler	was	doing,	had	become	personally	convinced	that	the	Copernican	system
was	correct,	and	he	was	looking	for	physical	evidence	to	support	that	opinion
and	convince	other	scholars.	Copernicus	had	mentioned	in	De	revolutionibus
that	the	planet	Venus	might	supply	important	evidence	in	the	case	against	an
Earth-centered	cosmos.	Venus,	reflecting	the	Sun’s	light,	waxes	and	wanes	as
the	Moon	does,	but	if	the	Ptolemaic	arrangement	of	the	cosmos	were	correct,
Earth	dwellers	would	never	be	positioned	in	such	a	way	as	to	see	the	face	of
Venus	anywhere	near	fully	lit	(the	equivalent	of	a	full	Moon).	As	the	first	decade
of	the	seventeenth	century	drew	to	a	close,	the	newly	invented	telescope	(Galileo
did	not	invent	it	but	was	putting	it	to	better	use	than	anyone	else)	made	it
possible	to	observe	the	phases	of	Venus	as	never	before,	and	in	1610	Galileo
followed	up	on	Copernicus’	suggestion.	He	found	that	Venus	had	a	full	range	of
phases.	How	could	any	scholar	fail	to	see	that	this	was	irrefutable	evidence	in



favor	of	Copernicus?	But	Galileo’s	Catholic	colleagues	included	a	group	of
recalcitrant	scholars	who	remind	one	of	an	unusually	virulent	strain	of
acusmatici.

Except	in	the	case	of	Giordano	Bruno,	whose	offenses	by	church	standards
were	so	flagrant	and	numerous	that	he	would	almost	surely	have	been	burned	at
the	stake	no	matter	where	he	thought	the	center	of	the	universe	was,	the	Catholic
church	hierarchy	had	for	centuries	been	rather	sluggishly	tolerant	of	new
astronomical	theories.	Not	a	murmur	was	heard	when	Nicholas	of	Cusa,	in	the
early	fifteenth	century,	put	the	Earth	in	motion	and	removed	it	from	the	center	of
the	universe,	nor	when	Copernicus	published	De	revolutionibus	in	1543.	Two	of
Copernicus’	strongest	supporters	were	prominent	Catholic	clergy.	But	in	1616,
when	both	Galileo	and	his	opponents	were	pushing	the	church	for	a	ruling	on	the
Copernican	question,	a	decree	was	issued	condemning	the	“new”	astronomy,
though	not	actually	calling	it	heresy—a	technicality	perhaps,	but	a	victory	for
Galileo	and	the	cardinals	who	supported	him.	In	this	decree,	the	Pythagoreans
took	an	unfair	hit:

And	whereas	it	has	also	come	to	the	knowledge	of	the	said
Congregation	that	the	Pythagorean	doctrine—which	is	false	and
altogether	opposed	to	the	Holy	Scripture—of	the	motion	of	the
Earth	and	the	immobility	of	the	Sun,	which	is	also	taught	by
Nicolaus	Copernicus	.	.	.	is	now	being	spread	abroad	and	accepted
by	many,	as	may	be	seen	from	a	certain	letter	of	a	Carmelite
Father.

The	Carmelite	father	who	had	put	the	Pythagoreans	in	the	range	of	fire	was	the
Reverend	Father	Paolo	Antonio	Foscarini.	His	letter,	dated	the	year	before	the
decree,	was	titled	“On	the	Opinion	of	the	Pythagoreans	and	of	Copernicus
Concerning	the	Motion	of	the	Earth,	and	the	Stability	of	the	Sun,	and	the	New
Pythagorean	System	of	the	World.”	Foscarini	insisted	this	doctrine	was
“consonant	with	truth	and	not	opposed	to	Holy	Scripture.”	The	church’s
“General	Congregation	of	the	Index,”	which	made	official	judgments	on	such
matters,	felt	differently.	Copernicus’	book	De	revolutionibus—seventy-three
years	after	its	publication—was	“suspended	until	corrected,”	and	Foscarini’s
work	was	“altogether	prohibited	and	condemned.”	It	took	seventeen	more	years
of	on-and-off	sparring,	and	Galileo’s	book	Dialogo,	for	matters	to	come	to	a
truly	dangerous	head	in	his	famous	trial.	The	Catholic	church,	for	centuries	the
guardian	and	bastion	of	learning,	had	turned	foolish	to	the	point	of	malign



senility	and	condemned	herself	and	Italy—the	ancient	home	of	Pythagoras—to
what	was	virtually	a	new	scientific	dark	age.	The	center	of	scientific	endeavor
and	achievement	moved,	irretrievably,	to	northern	Europe	and	England.

As	the	scientific	revolution	continued	north	of	the	Alps	in	the	mid-
seventeenth	century,	Kepler’s	three	laws	of	planetary	motion	and	his	Rudolfine
Tables,	based	on	Tycho	Brahe’s	observations,	rightly	gave	him	his	earthly
immortality,	but	his	polyhedral	theory	and	most	of	Harmonice	mundi	were
consigned	to	the	cabinet	of	curiosities.	No	one	took	nested	polyhedrons	or
cosmic	chords	and	scales	seriously	or	followed	up	on	them	as	science.	They	had
been	the	odd	and	unlikely	midwives	to	Kepler’s	“new	astronomy,”	helping	birth
the	future,	but	in	doing	so	had	relegated	themselves	to	the	past.	However,	the
conviction	that	numbers	and	harmony	and	symmetry	were	guides	to	truth
because	the	universe	was	created	according	to	a	rational,	orderly	plan	began	to
be	treated	as	a	given,	trustworthy	enough	to	underpin	what	would	later	be	called
the	scientific	method.

No	one	was	using	the	words	“science”	or	“scientific”	yet	in	their	modern
sense,	but	the	process	for	determining	what	was	and	was	not	true	about	nature
and	the	universe	was	continuing	to	evolve,	and	people	were	discussing	and
beginning	to	agree	about	how	this	process	should	work.	The	French	scientist	and
philosopher	René	Descartes,	one	of	the	first	to	try	to	establish	a	solid	foundation
for	human	understanding	of	the	world,	chose	mathematics	as	the	only
trustworthy	road	to	sure	knowledge.3	He	tried	to	show	that	a	single,	united
system	of	logical	mathematical	theory	could	account	for	everything	that	happens
in	the	physical	universe.	Christiaan	Huygens,	Edmond	Halley,	and	Isaac	Newton
all	shared	the	conviction	that	when	observations	were	inadequate,	one	could
even	with	some	confidence	go	out	on	a	limb	on	the	assumption	that	the	universe
is	orderly,	and	discovering	new	examples	of	“order”	was	beginning	to	be
regarded	as	a	sign	that	one	was	on	the	right	track.	Robert	Hooke,	in	the	field	of
biology,	suggested	that	crystals	like	those	that	may	have	alerted	the
Pythagoreans	to	the	existence	of	the	five	regular	solids	occurred	because	their
atoms	had	an	orderly	arrangement.4	Robert	Boyle	wrote	his	book	The	Sceptical
Chymist,	which	many	identify	as	marking	the	beginning	of	modern	chemistry,
and	cited	Pythagoras,	asserting	that	the	final	decisions	of	science	must	be	made
on	the	basis	of	both	the	evidence	of	the	senses	and	the	operation	of	reason.	This
balance,	on	which	Kepler	had	performed	such	prodigious	acrobatics	as	he
struggled	to	write	his	Astronomia	nova—without	thinking	of	it	as	a	“scientific
method”—was	becoming	the	balance	of	science.

Newton,	born	mid-century,	capped	off	the	Copernican	revolution	with	his



discovery	of	the	laws	of	gravity	and	his	1687	book	Philosophiae	Naturalis
Principia	Mathematica	(“Mathematical	Principles	of	Natural	Philosophy”),
known	as	his	Principia.	A	fervent	believer	in	the	harmony	and	order	of	the
universe,	he	was	convinced	that	the	observable	patterns	in	the	cosmos	were	the
visible	manifestation	of	a	profound,	mysterious,	underlying	order.	His	theories
of	gravitation	admirably	supported	the	Pythagorean	ideal	of	unity	and	simplicity.
The	same	force,	gravity,	that	kept	the	planets	in	orbit	also	dictated	the	trajectory
of	a	ball	thrown	on	Earth	and	kept	human	beings’	feet	on	the	ground,	and	its
laws	could	be	stated	in	a	simple	formula.	Though	he	was	notoriously	miserly
about	giving	credit	where	credit	was	clearly	due	among	his	contemporaries,
Newton,	in	an	extraordinary	gesture,	wrote	that	his	own	famous	law	of	universal
gravitation	could	be	found	in	Pythagoras.	Nor	was	this	the	extent	of	Newton’s
unusual	attributions.	He	sought	examples	among	the	Greeks,	the	Hebrews,	and
other	ancient	thinkers,	of	ideas	and	discoveries	that	seemed—sometimes	it	was
quite	a	stretch—to	foreshadow	his	own.	This	was	not	modesty.	Newton	was	by
no	means	a	modest	man.	It	was	more	a	way	of	elevating	himself	to	the	company
of	the	greatest	sages.	Better	than	discovering	something	new	was	rediscovering
knowledge	that	God	had	previously	revealed	only	to	extraordinary	men	of
legendary	wisdom.	Newton	thought	of	another	link	with	Pythagoras	when	he
used	a	prism	and	split	the	light	of	the	Sun	into	seven	colors.	There	were	seven
notes	in	the	Pythagorean	scale.5

Gottfried	Leibniz,	Newton’s	arch-rival	and	one	of	those	contemporaries	to
whom	Newton	should	have	given	considerably	more	credit,	wrote	in
Pythagorean	tones	that	“music	is	the	pleasure	the	human	soul	experiences	from
counting	without	being	aware	that	it	is	counting.”6	Leibniz	tried	to	construct	a
universal	language	which	had	no	words,	that	could	express	all	human	statements
and	resolve	arguments	in	a	completely	unambiguous	way,	even,	he	hoped,	bring
into	agreement	all	versions	of	Christian	faith.	His	attempts	to	make	good	on	this
scheme	included	a	use	of	numbers	that	would	have	pleased	the	Pythagoreans	and
annoyed	Aristotle:	“For	example,	if	the	term	for	an	‘animate	being’	should	be
imagined	as	expressed	by	the	number	2,	and	the	term	for	‘rational’	by	the
number	3,	the	term	for	‘man’	will	be	expressed	by	the	number	2×3,	that	is	6.”7

NEWTON’S	DISCOVERIES	ABOUT	gravity	showed	the	cosmos	seeming	to	operate
like	a	stupendous,	dependable	mechanism,	and,	in	the	eighteenth	century,
scholars	and	amateur	science	aficionados	picked	up	on	that	idea	and	became
obsessed	with	mechanisms	and	machines.	The	demonstration	of	a	new	apparatus
to	explain	or	test	a	scientific	principle	was	likely	to	cause	more	excitement	than



a	lecture	or	a	new	theory	at	meetings	of	the	Royal	Society	of	London	for
Improving	Natural	Knowledge,	or	of	the	Birmingham	“Lunar	Men”	of	Charles
Darwin’s	grandfather.	It	was	the	age	of	the	“clockmaker’s	universe”	and	of
England’s	industrial	revolution.	Careful	observation	and	experiment	became	the
hallmark	of	science,	but	cautious	generalization	was	also	encouraged,	especially
if	it	led	to	practical	applications.

In	other	ways,	in	the	eighteenth	century,	the	universe	was	failing	to	live	up
to	its	promise	of	simplicity.	The	Swedish	botanist	Carl	Linnaeus	was	applying
two-word	Latin	names	to	more	and	more	species	that	travelers	and	voyagers	to
all	corners	of	the	world	were	discovering.	There	were	a	greater	number	than
anyone	had	ever	imagined.	Linnaeus	saw	new	plants	in	his	garden,	too,	and
began	to	suspect,	a	century	before	Darwin’s	Origin	of	Species,	that	new	species
were	emerging	all	the	time.	He	decided	that	these	had	always	existed	in	the	mind
of	God	but	were	just	now	coming	into	material	existence,	a	very	Platonic	way	of
assuaging	his	religious	scruples.

Carl	Linnaeus

No	one’s	faith	in	the	completeness	of	universal	harmony	and	the	power	of
numbers	surpassed	that	of	the	French	mathematician	Pierre	Simon	de	Laplace,
whose	lifetime	spanned	the	turn	of	the	eighteenth	to	the	nineteenth	century.	For
him,	numbers	and	mathematics	were	an	unshakably	trustworthy	bridge	to	the
past	and	future—if	one	could	know	the	exact	state	of	everything	in	the	universe
at	a	given	moment.	His	contention	was	that	an	omniscient	being	with	that
knowledge,	with	unlimited	powers	of	memory	and	mental	calculation,	and	with
knowledge	of	the	laws	of	nature,	could	extrapolate	from	that	the	exact	state	of



knowledge	of	the	laws	of	nature,	could	extrapolate	from	that	the	exact	state	of
everything	in	the	universe	at	any	other	given	moment.

Meanwhile,	Pythagorean	themes	appeared	in	other	than	scientific	settings.
The	Whig	party	praised	the	governmental	structure	which	brought	together	king
and	Parliament	by	means	of	“natural”	laws,	with	these	words:

What	made	the	planets	in	such	Order	move,
He	said,	was	harmony	and	mutual	Love.
The	Musick	of	his	Spheres	did	represent
That	ancient	Harmony	of	Government.

That	was	by	no	means	an	isolated	allusion.	The	harmony	of	the	heavens	had
become	a	beloved	poetic	image.	William	Shakespeare,	a	contemporary	of
Galileo	and	Kepler,	had	given	it	beautiful	expression	in	The	Merchant	of	Venice,
where	he	had	Lorenzo	tell	Jessica,

.	.	.	soft	stillness	and	the	night
Become	the	touches	of	sweet	harmony	.	.	.
Look	how	the	floor	of	heaven
Is	thick	inlaid	with	patines	of	bright	gold;
There’s	not	the	smallest	orb	which	thou	behold’st
But	in	his	motion	like	an	angel	sings.
Such	harmony	is	in	immortal	souls;
But,	whilst	this	muddy	vesture	of	decay
Doth	grossly	close	it	in,	we	cannot	hear	it.

Shakespeare’s	contemporary	John	Davies	had	written	a	“justification	of	dance”
titled	“Orchestra”	that	was	full	of	such	allusions—not	only	to	the	celestial	music
but	also	to	the	four	elements.	Davies	was	not	making	a	scientific	or
philosophical	statement.	He	was	correcting	one	lady’s	disparagement	of	dancing
by	pointing	to	its	ancient,	primordial	origins.

Dancing,	bright	lady,	then	began	to	be
When	the	first	seeds	whereof	the	world	did	spring,
The	fire,	air,	earth	and	water	did	agree,
By	Love’s	persuasion,	nature’s	mighty	king,



To	leave	their	first	disordered	combating
And	in	a	dance	such	measure	to	observe
As	all	the	world	their	motion	should	preserve.

.	.	.	.	.
The	turning	vault	of	heaven	formed	was,
Whose	starry	wheels	he	hath	so	made	to	pass
As	that	their	movings	do	a	music	frame
And	they	themselves	still	dance	unto	the	same.

.	.	.	.	.
All	the	world’s	great	fortunes	and	affairs
Forward	and	backward	rapt	and	whirled	are
According	to	the	music	of	the	spheres.

John	Milton,	a	later	contemporary	of	Galileo	and	Kepler,	like	Shakespeare
referred	to	the	inability	of	human	ears	to	hear	this	music:

But	else	in	deep	of	night	when	drowsiness
Hath	locked	up	mortal	sense,	then	listen	I
To	the	celestial	Sirens’	harmony	.	.	.
Such	sweet	compulsion	doth	in	music	lie,
To	lull	the	daughters	of	Necessity,
And	keep	unsteady	Nature	to	her	law,
And	the	low	world	in	measured	motion	draw
After	the	heavenly	tune,	which	none	can	hear
Of	human	mould	with	gross	unpurged	ear.

Another	Englishman,	John	Dryden,	born	in	1631,	the	year	after	Kepler	died,	like
Davies	gave	music	a	voice	in	creation:

From	harmony,	from	heavenly	harmony,
This	universal	frame	began:
When	Nature	underneath	a	heap
Of	jarring	atoms	lay
And	could	not	heave	her	head,



The	tuneful	voice	was	heard	from	high:
Arise,	ye	more	than	dead!

Joseph	Addison,	born	later	in	the	century,	was	the	author	of	a	poem	that
combined	the	ideas	expressed	in	Psalm	19	with	the	image	of	the	music	of	the
spheres.	Christian	congregations	still	sing	it,	to	music	by	Franz	Joseph	Haydn.
The	final	verse	says	of	the	planets:

What	though	in	solemn	silence	all	move	round	the	dark	terrestrial	ball?
What	though	no	real	voice	nor	sound	amid	their	radiant	orbs	be	found?
In	reason’s	ear	they	all	rejoice,	and	utter	forth	a	glorious	voice:
Forever	singing	as	they	shine,	“The	hand	that	made	us	is	divine.”8

Johannes	Kepler	(and	nearly	everyone	who	has	sung	this	hymn)	would	have
disagreed	with	the	Earth-centered	cosmos	these	lines	implied,	but	Kepler	himself
—who	had	imagined	the	planets	arranged	in	perfect	harmony	at	the	moment	of
creation—could	not	have	put	it	better.	His	harmony	was	a	harmony	audible	to
“reason’s	ear.”	Even	a	century	after	Addison,	William	Wordsworth,	whose
lifetime	spanned	the	turn	of	the	century	from	the	1700s	to	the	1800s,	could	still
be	certain	no	explanation	or	footnote	was	required	when	he	wrote	of	“harmony
from	Heaven’s	remotest	spheres.”

PYTHAGOREAN	IDEAS	AND	traces	of	the	Pythagorean	tradition	also	showed	up	in
more	surprising	contexts.	One	of	the	most	bizarre	examples	was	the	reimagining,
in	the	late	eighteenth	and	early	nineteenth	centuries,	of	Pythagoras	as	the	hero	of
intellectual	revolutionaries	in	Europe	and	Russia.	This	use,	or	misuse,	of
Pythagorean	themes	was	brought	to	light	by	James	H.	Billington	in	his	book	Fire
in	the	Minds	of	Men:	Origins	of	the	Revolutionary	Faith.9	Billington	showed	that
in	the	midst	of	confusion,	when	nothing	was	stable	and	dependable,	Pythagoras
became	an	icon	of	revolution,	and	his	name	and	the	ideals	and	symbols
associated	with	him	ran	as	leitmotifs	through	the	decades	of	revolution	and
revolutionary	thinking.

In	1776,	the	year	of	the	American	Declaration	of	Independence	and	eleven
years	before	the	date	usually	identified	as	the	beginning	of	the	French
Revolution,	a	group	in	Bavaria	founded	by	one	Adam	Weishaupt	and	recruited
from	the	Masonic	lodges	in	Munich	was	calling	itself	“Illuminist.”	Though
“Illuminism”	was	difficult	for	anyone	at	the	time	(or	today)	to	define,	for
Weishaupt	it	meant	a	“revolution	of	the	mind,”	discarding	and	avoiding	all



“spiritualist	distortions”	and	occult	practices	and	ideas.	However,	the	name	and
concepts	vaguely	associated	with	Illuminism	predated	Weishaupt,	and	so,
probably,	did	the	connection	with	Pythagoras.	Because	Illuminists	were	usually
as	secretive	as	Pythagoras	and	his	earliest	followers,	many	questions	about	them
cannot	be	answered,	and	a	danger	of	being	a	secret	society	is	that	your	popular
and	historical	image	may	be	created	not	by	yourself	but	by	your	most	vocal	and
influential	enemies.	Some	credited	the	Illuminists	with	almost	single-handedly
precipitating	the	French	Revolution.	Others	said	they	never	really	existed	at	all
but	were	a	“police	myth”	conjured	up	by	rightists	to	inspire	public	fear	of
clandestine	plots,	a	myth	half	believed	by	the	authorities	themselves.	Others
assert	that	they	were	a	fictional	invention	of	propagandists	who	opposed
Masonry	and	tried	to	tarnish	its	image	by	associating	it	with	insurrection	and
revolution.	Yet	others	claim	that	they	were	an	extreme	branch	of	Masonry,	or
something	independent	that	“infected”	Masonry.	The	Masons	also	were
intensely	secretive,	though	not	necessarily	for	the	same	reasons	the	Illuminists
were.

At	the	time	of	Columbus	there	were	“Alumbrados”	in	Spain	whose
mysticism	centered	around	the	idea	that	a	human	soul	could	be	subjected	to
inner	purification	leading	to	complete	submission	to	God’s	will	and	direct
communication	with	and	through	the	Holy	Spirit.	Eighteenth-century	Illuminists
also	emphasized	inner	perfection	and	purification,	but	with	a	secular	stress	on
reason	and	logic.	This	newer	Illuminist	ideology	either	first	appeared	in	lodges
of	the	Freemasons	and	other	Masonic	orders,	such	as	Weishaupt’s	in	Bavaria,	or
else	found	fertile	ground	there	and	rapidly	took	over.	For	Masons,	working
toward	inner	perfection	and	purification	was	already	central	to	their	teaching,
and	it	was	also	attractive	to	see	themselves	as	re-creating	an	ancient
brotherhood.	In	fact,	it	must	have	been	difficult	for	a	member	of	a	Masonic
lodge	to	know	whether	he	was	merely	taking	part	in	an	inspiring	ceremony	full
of	ancient	symbols,	or	dealing	with	something	that	really	was	supposed	to	have
supernatural	power,	or	fomenting	revolution—or	what,	if	any,	of	this	made	him
an	“Illuminist.”	How	much	more	difficult	for	anyone	looking	from	the	outside!
Not	only	was	there	“fire	in	the	minds	of	men”;	there	was	also	considerable
confusion.	The	Illuminist	slant,	however,	does	seem	to	have	been	that	the	road	to
perfection	and	purification	could	and	should	be	taken	not	only	by	individuals	but
by	human	societies.	Had	not	Pythagoras	engineered	a	marvelous	reconstruction
of	society	in	Croton?	However,	Illuminists	believed	that	this	time,	in	the
eighteenth	century,	the	process	was	going	to	require	enormous	upheaval	and	the
violent	overthrow	of	existing	authority.



As	early	as	1780,	seven	years	before	the	French	Revolution	began,	the
attempt	to	legitimize	revolutionary	thinking	by	reference	to	ancient	ideas	had
ceased	to	be	something	happening	only	in	closed	lodges	and	secret	gatherings.
Intellectual	revolutionaries	found	it	inspiring	and	reassuring	to	resurrect	what
they	regarded	as	primal,	natural	truths	that	had	been	discovered	in	antiquity,	and
much	that	was	attributable	to,	or	at	least	attributed	to,	the	Pythagoreans	entered
the	symbolism	of	the	incipient	revolution	itself.	The	rhetoric	and	the	images	that
began	to	appear	openly	in	the	1780s	featured	four	“Pythagorean”	geometric
figures:	the	circle,	the	triangle,	and	their	solid	counterparts	the	sphere	and	the
pyramid.	These	had	also	been	symbols	for	God	in	medieval	Christianity,	but	that
use	was	militantly	rejected.

Pythagoras	and	also	Prometheus	seemed	ideal	role	models.	Concepts
associated	with	Pythagoras,	correctly	or	incorrectly—prime	numbers,	geometric
shapes,	and	the	harmonic	ratios	of	music—were	“truth”	that	was	more	ancient
and	fundamental	than	the	doctrines	of	Christianity	that	intellectual
revolutionaries	had	discarded.	Plato	had	spoken	of	“a	gift	of	the	gods	to	human
beings,	tossed	down	from	the	gods	by	some	Prometheus	together	with	the	most
brilliant	fire,”	and	Plato’s	ancient	readers	had	assumed	this	“Prometheus”	was
Pythagoras.	Prometheus,	according	to	legend,	had	stolen	that	“most	brilliant
fire”	from	the	gods,	and	fire	had	long	been	associated	with	Pythagoras,	the
Pythagorean	“central	fire.”	So	Pythagoras	seemed	a	splendidly	appropriate
symbol	for	the	hope	that	darkness	would	vanish	forever,	a	new	day	was
dawning,	and	the	sun	would	never	set.	The	fact	that	he	had	left	Samos	to	avoid	a
tyranny	also	qualified	him	as	a	model	intellectual	turned	revolutionary.	In	pre-
revolutionary	Paris,	Benjamin	Franklin	was	dubbed	“the	Pythagoras	of	the	New
World,”	when	he	served	as	Venerable	Master	of	the	Masonic	Lodge	of	the	Nine
Sisters	(La	Loge	des	Neufs	Soeurs),	whose	membership	also	included	such
noteworthy	revolutionary	figures	as	Nicolas	de	Bonneville,	“Anarcharsis”
Cloots,	Georges	Danton,	and	Sylvain	Maréchal.

The	French	Revolution	began	in	1787,	and	the	storming	of	the	Bastille	in
Paris	took	place	July	14,	1789.	The	execution	of	the	French	royal	family,
members	of	the	nobility,	and	clergy	began	in	1792,	and	the	guillotine	was	busy
for	several	years	as	those	who	had	overthrown	the	monarchy	turned	on	one
another.	It	was	a	time	of	chaos,	ferment,	and	confusion—and	not	only	in	politics.
Conflicting	reinterpretations	of	history,	religion,	and	science	vied	with	one
another	as	factions	right	and	left	sought	legitimacy,	and	those	caught	in	the
maelstrom	clutched	desperately	not	only	for	safety	or	victory	but	also	for	new
self-images.	Billington	pointed	out	that	it	was	not	insignificant	that	many	of	the



musicians	in	Strasbourg	who	first	played	the	hymn	of	the	French	Revolution,
“La	Marseillaise,”	in	1792,	the	year	the	royal	family	were	executed,	had	also
played	in	the	orchestra	when	Mozart’s	Magic	Flute	was	first	introduced	to
French	audiences	there	a	few	months	earlier.	Illuminism	had	reached	Mozart	in
its	Masonic	guise,	and	The	Magic	Flute	was	chock	full	of	Masonic,	“Illuminist,”
and	Pythagorean	symbols.

The	opera	seems,	to	most	twenty-first-century	eyes	and	ears,	a	delightful
fairy	tale	embellished	with	some	archaic	pseudo-religious	ideas.	However,	in	the
1790s,	many	would	have	seen	it	differently.	It	spoke	symbolically	and
eloquently	for	an	era	when	traditions	and	assumptions	were	being	called	into
question	or	crumbling	outright,	when	new	discoveries	of	science	and	the	ideas	of
the	Enlightenment	were	continuing	to	undermine	or	transform	older	versions	of
Christian	faith,	and,	when	the	over-ornate,	elaborate,	simpering,	aristocratic
artificiality	of	the	Rococo	had	little	to	offer	but	denial	of	reality.	In	this	milieu,
Mozart,	Masons,	Illuminists,	and	revolutionaries	were	alike	in	preferring	simple
harmonies	and	forms	in	nature	that	could	provide	a	securer	philosophical
foothold—a	new,	surer,	more	inspiring	pathway	to	truth.

In	about	1786,	a	young	man	who	would	later	be	dubbed	the	“first
professional	revolutionary,”	Filippo	Michele	Buonarroti,	had	encountered
Illuminism	in	a	“Scottish	Rite”	Masonic	lodge	in	Florence.	This	lodge	had
become	a	forum	where	Illuminists	held	sway	and	discussed	radically
revolutionary	ideas.	So	severely	did	the	Florentine	authorities	frown	on
Buonarroti’s	involvement	that	although	he	was	married	to	a	noblewoman,	held	a
doctorate	of	law,	and	was	highly	regarded	for	his	literary	talents,	his	library	was
raided	and	Masonic	and	anticlerical	books	confiscated.	Shortly	thereafter,	an
unrepentant	Buonarroti	found	himself	banished	to	Corsica.10	In	1789—the	year
the	Bastille	fell—it	looked	for	a	short	time	as	though	he	would	join	several
young	Italians	who	were	starting	up	of	a	new	journal	in	Innsbruck	(for	which
city	they	used	the	code	word	“Samos”).	These	men	had	been	influenced	by
Weishaupt’s	Illuminism	while	studying	in	Bavaria.	However,	events	in	France
proved	too	enticing	to	Buonarroti,	and	instead	of	going	to	“Samos,”	he	was	soon
deeply	involved	in	revolutionary	activities	there.

Weishaupt,	meanwhile,	had	been	the	first	in	many	centuries	to	consider	what
he	thought	were	Pythagorean	principles	as	direct	guidelines	for	public	policy.	In
1787,	he	had	published	his	Pythagoras,	laying	out	a	design	for	the	most
politicized	form	of	Illuminism	and	reiterating	the	idea	that	simple	principles	first
taught	in	Croton	were	still	a	splendid	guide	for	reforming	and	rebuilding	society.
He	especially	approved	of	ending	ownership	of	private	property.	Following



Weishaupt’s	lead,	when	Buonarroti	drew	up	his	own	blueprint	for	revolution,	he
emphasized	that	same	practice.	Others	joined	the	Pythagorean	chorus:	Nicolas
de	Bonneville	composed	poetry	about	“the	numbers	of	Pythagoras”	and	insisted
that	Pythagoras	“brought	from	the	Orient	his	system	of	true	Masonic	instruction
to	Illuminate	the	Occident.”	The	American	Thomas	Paine,	the	famous
pamphleteer	of	the	American	Revolution	and	author	of	Common	Sense,	living	a
liberated	life	in	a	ménage	à	trois	with	Bonneville	and	Bonneville’s	wife,	worked
Pythagoras	into	his	version	of	the	history	of	the	Masons,	though	he	gave	the
Druids	primary	credit	for	providing	Masonry	with	an	ideology	that	Paine
thought	a	finer	alternative	to	Christianity.	The	sun	worship	of	the	Druids—
paralleling	the	Pythagorean	belief	in	the	central	fire—had	passed	into	Masonry,
Paine	wrote,	in	An	Essay	on	the	Origin	of	Free	Masonry.

In	1799,	Sylvain	Maréchal	wrote	a	six-volume	biography	titled	Voyages	of
Pythagoras	that	raised	its	protagonist	above	the	level	of	an	ideal	for	this	one
revolutionary	period.	Kepler	had	dubbed	Pythagoras	“the	grandfather	of	all
Copernicans,”	but	the	family	became	considerably	larger	when	Maréchal
insisted	that	all	revolutionaries	of	all	times	were	“heirs	of	Pythagoras.”	The
Pythagoras	of	Maréchal’s	biography	was	a	great	geometer	who	was	driven	from
the	island	of	Samos	by	the	tyrant	Polykrates	and	fled	to	Croton,	where	he
founded	a	philosophical-religious	brotherhood	with	the	goal	of	transforming
society.	The	story	went	on,	reimagined	from	the	point	of	view	of	those	who	felt
themselves	part	of	a	noble,	centuries-old	tradition	devoted	to	that	same	goal:
Neo-Pythagoreans	who	were	radical	intellectual	reformers	had	flourished	in
Alexandria	in	the	second	century	B.C.	.	.	.	the	Pythagorean	Apollonius	of	Tyana,
the	itinerant	wonder-worker,	was	not	a	rather	ridiculous	cult	figure	but	a
legitimate	and	important	rival	to	Christ,	since	discredited	by	Christian	writers.	.	.
.	in	the	Middle	Ages,	those	attracted	to	Pythagorean	ideas	recognized	that
Pythagoras	was	a	secret	Jewish	link	between	Moses	and	Plato.	.	.	.
Pythagoreanism	had	never	ceased	to	fascinate	thinkers	of	the	Renaissance	and
Enlightenment	but	had	remained	only	an	undercurrent	until	the	time	for	its	new
awakening	had	come,	in	the	revolution	that	would	transform	France	and	the	rest
of	Europe.	Maréchal	wrote	of	“the	equality	of	nature”	and	a	Pythagorean
“republic	of	equals,”	and	echoed	Weishaupt	and	Buonarroti	in	advising	his
readers	to	“own	everything	in	common,	nothing	for	yourself.”	Volume	VI	of	the
Voyages	included	no	fewer	than	3,506	supposed	“Laws	of	Pythagoras.”

Masons,	Illuminists,	and	intellectual	revolutionaries	associated	Pythagoras
with	prime	numbers,	though	there	had	been	no	suggestion	in	antiquity	of	such	a
link.	Great	significance	was	attached	to	what	were	believed	to	have	been	the
central	prime	numbers	of	Pythagorean	mysticism:	1,	3,	5,	and	7.	The	most



central	prime	numbers	of	Pythagorean	mysticism:	1,	3,	5,	and	7.	The	most
extreme	uses	of	“Pythagorean	principles”	were	efforts	to	find	paths,	by	means	of
mystical	numbers	and	numerology,	to	the	deep	truths	of	nature,	different	from
the	use	of	numbers	by	early	Pythagoreans,	and	even	more	different	from	their
use	by	scientists	to	reach	a	mathematical	understanding	of	nature	and	the
cosmos.	In	a	moment	of	leftist	paranoia	about	a	possible	Jesuit	plot	for	a	secret
takeover	of	Masonry,	there	was	a	suggestion	that	17	was	the	number	needed	to
understand	the	Jesuit	plan.	A	rightist	pamphleteer	turned	that	idea	around	and
proceeded,	ingeniously,	to	show	how	all	of	revolutionary	history	derived	from
the	number	17.	Other	opponents	on	the	right	picked	up	on	this	same	type	of
pseudo-Pythagorean	number	mysticism	and	produced	pamphlets	suggesting	that
the	prime	numbers	were	a	code	for	the	organization	of	revolution.

The	obsession	with	Pythagoras	did	have	something	to	do	with	the	way
revolutionary	activities	were	organized,	though	this	involved	triangles	and
circles	rather	than	prime	numbers.	The	link	revolutionary	intellectuals	made
between	Pythagoreans	and	the	circle	and	sphere	was	not	far-fetched.	The
Pythagoreans	(as	reflected,	for	instance,	in	the	fragments	of	Philolaus)	had	been
among	the	earliest	to	think	in	terms	of	a	system	in	which	the	Earth	and	the
universe	were	both	spherical.	Furthermore,	Newton’s	laws	of	gravity,	which
Newton	himself	had	linked	with	Pythagoras,	revealed	a	“circular	harmony.”
Another	Pythagorean	doctrine,	the	transmigration	of	souls,	also	suggested	a
circular	movement,	forever	returning	to	begin	again.	Illuminist	“Pythagoreans”
were	fond	of	the	idea	that	a	purification	process	took	place	within	the	framework
of	this	“circular”	transmigration	of	souls,	beginning	with	the	lowest	forms	of
life,	spiraling	upward	through	the	level	of	humanity	to	the	divine	spheres	of	pure
rationality.	The	“rules	of	geometry,”	as	they	called	the	laws	behind	such
schemes,	were	appropriate	for	those	who	thought	of	themselves	as	the	“mason-
architects”	of	a	new	society.	The	architect	Pierre	Patte	argued	that	there	was	a
superior	morality	about	circular	shapes	because	they	were	essentially	more
egalitarian	and	communal.

Accordingly,	one	way	of	organizing	Illuminist	groups	was	in	a	hierarchy	of
concentric	circles.	A	flame	“at	the	center”	represented	the	central	fire	around
which	Earth,	Sun,	and	planets	moved	in	the	Pythagorean	ten-body	system.	As
one	advanced	in	Illuminism,	one	progressed	from	the	outer	circles	inward,
freeing	oneself	from	physical	limitations	to	join,	or	rejoin,	life	in	the	inner	circle
or	most	heavenly	sphere.	The	same	symbolism	applied	to	societies,	connecting
the	circles	to	the	idea	of	“revolution.”	Like	individuals,	societies	could	revolve
inward	through	concentric	circles,	freeing	themselves	from	the	limitations	of	old
traditions	and	beliefs	to	join	the	inner	circle	of	freedom	and	rational	simplicity.
According	to	the	report	of	a	young	collaborator	of	Buonarroti’s,	Gioacchino



According	to	the	report	of	a	young	collaborator	of	Buonarroti’s,	Gioacchino
Prati,	the	first	organization	that	Buonarroti	instituted,	in	the	1790s,	the	Sublime
Perfect	Masters,	was	composed	of	concentric	circles	each	of	which	had	its	own
secret	creed.	The	inner	circle	was	absolutely	egalitarian	and	so	secret	that	the
outer	circles	were	unaware	of	its	existence.	If	the	writings	of	some	critics	of	the
Illuminists	are	to	be	trusted,	Illuminist	groups	organized	also	in	another	way	into
“circles,”	a	code	name	for	nine-man	cells	of	conspiracy.	Weishaupt,	the
Bavarian	Illuminist,	was	particularly	fond	of	circles	as	symbols	and	considered	it
symbolic	to	speak	of	“circulating”	his	ideas	by	means	of	“circulars.”

The	triangle	used	in	revolutionary	symbolism	was	the	equilateral	triangle,
the	tetractus,	which	had	also	previously	been	an	important	symbol	in	Masonry.
On	seals,	stamps,	placards,	and	banners,	Liberty,	Equality,	and	Fraternity	made
up	sides	of	a	triangle,	colored	in	red,	white,	and	blue.	Hats	were	tricornered.	In
1798	Franz	Xavier	von	Baader	wrote	a	book	called	On	the	Pythagorean	Square
in	Nature,	a	strange	title	for	a	book	that	celebrated	triangles.	Three	elements—
fire,	water,	and	earth	(air	seemed	not	to	interest	von	Baader)—were	given	life	by
an	“all-animating	principle,”	a	“point	of	sunrise,”	represented	by	a	dot	in	the
center	of	an	equilateral	triangle.	This	image	became	hugely	popular.	Maréchal
saw	triangular	harmonies	in	the	three	roles	of	a	man	as	father,	son,	and	husband,
three	persons	in	one,	replacing	the	Christian	Trinity	with	a	trinity	centered	in
each	individual.

The	triangle	showed	up	in	a	triangular	organization	of	revolutionary	groups.
An	individual	from	an	inner	group	recruited	two	apprentices	from	an	outer
group,	and	eventually	each	of	those	recruited	two	more	to	form	his	own	triangle.
As	Weishaupt	described	it,

I	have	two	directly	under	me	into	which	I	breathe	my	entire	soul,
and	these	two	each	have	two	others,	and	so	forth.	In	this	manner	I
am	able,	in	the	simplest	way,	to	set	thousands	of	people	into
movement	and	flames.	In	this	manner	the	Order	must	be
organized	and	operate	politically.

This	meant	that	each	man	knew	the	name	and	identity	of	only	one	from	the	inner
group	above	him.	It	was	a	relatively	secure	form	of	organization,	an	interlocking



system	that	was	difficult	to	infiltrate	effectively.	The	Spanish	Triangle
Conspiracy	of	1816,	a	plot	to	kill	King	Ferdinand	VII,	was	appropriately
named.*

In	a	less	potentially	deadly	usage,	the	mystic	Louis-Claude	de	Saint-Martin
wildly	mixed	images	and	cultures	in	his	hope	that	Pythagorean	forms	and
numbers	could	be	employed	to	transform	Paris	into	a	new	Jerusalem,	with
revolutionary	democracy	becoming	a	“deocracy.”	Others	made	related	plans	for
an	innovative	Parisian	architecture,	based	on	the	circle,	triangle,	pyramid,	and
sphere—an	idea	that	was	remarkably	realized	in	the	1980s	in	I.	M.	Pei’s
controversial	modern	entrance	to	the	Louvre,	a	glass	pyramid.

The	“Pythagoreans”	who	idealized	their	role	model	as	an	intellectual	turned
revolutionary	also	celebrated	his	association	with	music	and	were	particularly
fond	of	“songs	without	words.”	These	seemed	a	link	with	the	music	of	the
spheres,	expressing	“the	harmony	of	creation,	or	rather	of	the	world	as	it	should
be.”	Antoine	Fabre	d’Olivet,	who	composed	music	for	Napoleon’s	coronation,
also	set	to	music	the	Golden	Verses	of	Pythagoras,	the	pseudo-Pythagorean
work	that	had	been	popular	in	the	Roman/Hellenistic	era,	and	wrote	that	music
was	“the	science	of	harmonic	relationships	of	the	universe.”

In	1804,	Napoleon,	who	five	years	earlier	had	installed	a	military
dictatorship	in	France	with	himself	as	“First	Consul”—the	event	usually
identified	as	the	end	of	the	French	Revolution—declared	France	a	hereditary
empire	and	crowned	himself	emperor.	Thus,	with	the	beginning	of	the	new
century,	European	revolutionary	hopes	waned	seriously,	but	the	iconic
Pythagoras	became	important	in	a	new	way	to	those	who	opposed	Napoleon.	As
France	followed	the	Roman	example	and	transformed	herself	from	a	republic	to
an	empire,	Pythagoras	was	viewed	nostalgically	as	an	ancient,	nobler	alternative
to	Napoleonic	images	of	conquest,	expansion,	and	domination.	Both	Paine	and
Maréchal	envisioned	themselves	as	still	following	in	the	footsteps	of	Pythagoras,
as	intellectuals	temporarily	unable	to	act	effectively	(“in	exile”)	but	devoted	to
constructing	a	brotherhood	that	would	eventually	free	human	society.	In	the
words	of	Billington,	two	labels—Pythagoras	and	“Philadelphia”	(signifying
brotherly	love)—“recur	like	leitmotifs	amidst	the	cacophony	of	shifting	ideals
and	groups	during	the	recession	of	revolutionary	hopes.	.	.	.	Pythagoras	became	a
kind	of	patron	saint	for	romantic	revolutionaries,”	who	more	than	ever	were	in
need	of	“symbols	of	secular	sanctity.”

Pythagorean	inspiration	and	iconography	reached	Russia	the	same	year
Napoleon	became	emperor	in	Paris,	when	Maréchal’s	biography	of	Pythagoras
began	to	appear	in	official	Russian	government	journals,	a	volume	each	year,



and	parts	of	it	were	excerpted	in	other	Russian	periodicals.	A	kruzhkovshchina
(mania	for	circles)	began	in	Russia	and	would	last	into	the	twentieth	century.	In
1818,	in	the	western	Ukraine,	young	men	organized	a	“society	of	Pythagoras”
with	its	own	collection	of	“rules	of	the	Pythagorean	sect.”	A	series	of	groups
calling	themselves	free	Pythagoreans	were	soon	forming	in	other	areas	of	the
Russian	empire.	Groups	of	radicals	frequently	debated	one	another	about	rival
sets	of	“laws	of	Pythagoras.”	Some	preferred	those	that	banned	private
ownership	of	property;	others,	those	(whose	Pythagorean	origin	was	dubious)
stressing	that	weapons	and	friendship	could	conquer	all.	Still	others	insisted	that
Pythagorean	teachings	regarding	moral	perfection	had	to	be	given	priority	over
legal	reform.	Billington	also	tells	of	one	student	group	in	Vilnius	that	met	at
night	in	locations	of	great	natural	beauty	to	hear	occult	wisdom	of	an	“arch-
illuminated	visitor”	from	an	“inner	circle.”

A	brief	new	tide	of	insurrections	against	monarchs	in	Europe	that	started
with	the	Spanish	Triangle	Conspiracy	of	1816	ebbed	dramatically	in	1823.	The
pope	condemned	Masonry,	and	several	of	the	monarchies	outlawed	it.
Throughout	Europe,	civil	liberties	were	curtailed	and	organized	discussions
came	under	suspicion.	Vestiges	of	republicanism,	including	Pythagorean
symbols,	fell	out	of	official	and	public	favor.	The	rector	of	the	University	of
Kazan	decreed	that	the	Pythagorean	theorem	should	not	be	taught.

The	Russian	revolution	of	December	1825	was	a	failed	echo	of	the	fervor
that	had	inspired	intellectuals	in	Europe	for	more	than	half	a	century.	Young
officers	who	had	helped	defeat	Napoleon	and	marched	into	Paris	in	1814	had
experienced	there	a	freer,	more	enlightened	world.	They,	rather	than	the	lower
classes	in	Russia,	had	begun	to	organize	with	the	hope	of	bringing	reform	to
Russia—in	the	words	of	one	of	the	Turgenev	brothers,	to	resist	being	turned
“back	into	gingerbread	soldiers!	And	by	whom?	Political	pygmies.”

Among	those	whose	thinking	and	work	led	up	to	that	brief,	doomed
Revolution	of	1825,	Pythagoras	was	again	an	inspiration.	F.	N.	Glinka,	who
founded	a	group	called	the	Union	of	Salvation,	one	of	many	secret	societies
formed	at	this	time,	was	strongly	moved	by	a	French	work	that	he	read	in
translation	about	“the	institute	of	Pythagoras.”	A	leading	Russian	periodical
featured	an	article	about	the	Sect	of	Pythagoreans	that	included	a	series	of
questions	and	answers	like	those	favored	by	the	acusmatici	(“What	is	universal?
Order.	What	is	friendship?	Equality”)	and	a	description:	“not	having	any	private
property,	not	knowing	false	pride	and	vain	praise,	far	from	petty	things	that	often
divide,	they	competed	with	one	another	only	in	doing	good	.	.	.	and	learned	to
use	things	in	common	and	forget	about	ownership.”	One	of	the	leaders	of	a



“circle”	that	helped	foment	the	revolt,	called	the	Green	Lamp,	wrote	a	piece	that
imagined	St.	Petersburg	three	hundred	years	in	the	future.	In	his	vision,	the	tsar
and	all	Orthodoxy	would	have	given	way	to	Pythagorean	forms	represented	by	a
circular	temple,	music,	and	a	phoenix	with	an	olive	branch.

When	the	1825	revolution	failed,	five	leaders	were	hanged	and	the	others
exiled	to	Siberia.	Perhaps	there	was	consolation	in	recalling	that	Pythagoras,
their	iconic	ancient	model,	had—at	least	in	the	mythology	they	thought	they
knew—been	forced	to	flee	in	ignominy	from	a	city	he	had	tried	to	introduce	to	a
better	way	of	life.

BEYOND	REVOLUTIONARY	CIRCLES,	other	literature	of	the	nineteenth	century
remembered	Pythagoras.	The	poet	Percy	Bysshe	Shelley	wrote	a	piece	praising
the	vegetarian	“Pythagorean	Diet,”	and	Leo	Tolstoy	chose	to	follow	it.	Louisa
May	Alcott	knew	her	readers	would	need	no	explanation	when	she	wrote	in	Jo’s
Boys	that	“Grandpa	March	cultivated	the	little	mind	with	the	tender	wisdom	of	a
modern	Pythagoras,	not	tasking	it	with	long,	hard	lessons,	parrot-learned,	but
helping	it	to	unfold	as	naturally	and	beautifully	as	sun	and	dew	help	roses
bloom.”	Honoré	de	Balzac	attributed	the	saying	“no	man	is	known	until	he	dies”
to	Pythagoras.	Pythagoras	was	one	of	the	ghosts	present	in	Charles	Dickens’	The
Haunted	House	and	also	made	an	appearance	in	The	Pickwick	Papers.

Also	in	the	nineteenth	century,	the	belief	continued	that	the	concept	of	the
mathematical	structure	of	the	universe	had	originated	with	the	Pythagoreans.
The	economist	William	Stanley	Jevons	wrote:	“Not	without	reason	did
Pythagoras	represent	the	world	as	ruled	by	number.	Into	almost	all	our	acts	of
thought	number	enters,	and	in	proportion	as	we	can	define	numerically	we	enjoy
exact	and	useful	knowledge	of	the	universe.”11

One	Pythagorean	ideal	began	to	come	into	its	own	in	a	way	it	could	not	have
done	earlier.	The	assumption	that	there	was	unity	to	the	universe	had	already
become	one	of	the	pillars	on	which	science	rested,	but	not	until	the	nineteenth
century	did	the	knowledge	and	the	instruments	begin	to	be	available	that	would
allow	scientists	to	explore	the	question	whether	this	assumption	was	valid,	or
whether,	like	the	music	of	the	spheres,	it	was	best	relegated	to	the	realm	of
poetic	metaphor.	The	idea	that	there	is	unity	to	nature	emerged	strongly	in	the
work	of	three	men	who	had	a	particularly	significant	impact	on	the	future	of
science.

When	the	Danish	physicist	and	chemist	Hans	Christian	Oersted	wrote	his
doctoral	thesis	about	a	book	by	Immanuel	Kant	called	The	Metaphysical
Foundations	of	Knowledge,	he	was	already	convinced	that	all	experience	could



be	accounted	for	by	a	correct	understanding	of	the	forces	of	nature,	and	that	the
forces	of	nature	were	actually	not	many	forces	but	one.	Kant	had	suggested	there
were	two	basic	forces,	but	Oersted	decided	to	push	forward	with	the	certainty
that	light,	heat,	chemical	affinity,	electricity,	and	magnetism	were	all	different
faces	of	“one	primordial	power.”	In	1820	he	discovered	electromagnetism,
having	“adhered	to	the	opinion,	that	the	magnetical	effects	are	produced	by	the
same	powers	as	the	electrical	.	.	.	not	so	much	led	to	this	by	the	reasons
commonly	alleged	for	this	opinion,	as	by	the	philosophical	principle,	that	all
phenomena	are	produced	by	the	same	original	power.”

Michael	Faraday	was	another	early-nineteenth-century	scientist	who
undertook	a	lifelong	search	for	ways	in	which	the	forces	of	nature	are	unified.
He	began	his	professional	life	as	a	chemist	and	discovered	several	new	organic
compounds.	As	had	been	true	of	Linnaeus’	numerous	previously	unknown
species,	those	discoveries	might	have	been	taken	to	indicate	a	lack	of	unity,	but
instead	they	expanded	awareness	of	what	was	out	there	to	be	unified.	A	tally	of
Faraday’s	most	notable	contributions	included	producing	an	electric	current
from	a	magnetic	field,	showing	the	relationship	between	chemical	bonding	and
electricity,	and	discovering	the	effect	of	magnetism	on	light.

Michael	Faraday

Faraday’s	work	was	the	experimental	foundation—and	also	a	large	part	of
the	theoretical	foundation—for	the	work	of	James	Clerk	Maxwell	later	in	the
century.	Maxwell’s	electromagnetic	field	theory	achieved	the	full	unification	of
electricity	and	magnetism.	The	“electromagnetic	force”	would	enter	the



twentieth	century	as	one	of	four	basic	forces	of	nature.	Maxwell’s	equations,
based	in	turn	on	Faraday’s	study	of	electric	and	magnetic	lines	of	force,	would
also	be	instrumental	in	setting	a	scientific	trajectory	toward	the	linking	of	mass
and	energy	in	Einstein’s	special	theory	of	relativity.	Science	at	the	turn	of	the
twentieth	century	was	well	on	the	way	to	finding	the	unity	of	nature	that
Pythagoreans	had	so	fervently	believed	in.	Paradoxically,	Maxwell’s	work	also
provided	a	vision	of	reality	with	problems	that	would	be	resolved	in	the
twentieth	century	by	quantum	theory.	And	quantum	theory,	in	its	turn,	would
cause	a	crisis	of	faith	in	the	rationality	of	the	universe,	a	crisis	on	a	scale	with
that	perhaps	caused	by	the	ancient	Pythagorean	discovery	of
incommensurability.



CHAPTER	18

Janus	Face
Twentieth	Century

IN	THE	TWENTIETH	CENTURY,	two	major	books	appeared	that	highlighted
humanity’s	debt	to	Pythagoras	and	the	Pythagoreans.	“Debt	to	Pythagoras”
might	seem	to	imply	that	there	is	something	positive	for	which	to	thank
Pythagoras	and	his	followers,	and	one	of	the	authors,	Arthur	Koestler,	certainly
believed	there	was.	Bertrand	Russell,	on	the	other	hand,	insisted	that	most	of
Pythagoras’	influence	had	been	negative.	Their	two	accounts	constitute	an
excellent	example	of	how	taking	off	one	pair	of	glasses	and	putting	on	another
can	change	the	view	in	astounding	ways.1

Russell	was	born	in	1872.	In	the	years	leading	up	to	World	War	I,	he	tackled
a	question	that	would	engage	him	for	most	of	his	life:	whether	mathematics	can
be,	to	a	significant	degree,	reduced	to	logic,	with	one	true	statement	implying	the
next.	It	is	perhaps	conventional	wisdom	that	this	is	precisely	the	way
mathematics	works,	but	to	assume	so	betrays	a	naive	view.	The	issue	is	complex,
and	Russell	knew	it	was.	Though	his	place	among	academics	was	more	as
philosopher	than	mathematician,	in	Principles	of	Mathematics	and	a	three-
volume	work	that	he	co-authored	with	Alfred	North	Whitehead,	Principia
Mathematica,	his	goal	was	to	re-found	mathematics	on	logic	alone.2	There	is
nothing	anti-Pythagorean	about	faith	in	mathematical	logic.	It	was	on	other
issues	that	Russell	took	on	both	Pythagoras	and	Plato.

Vehemently	rejecting	the	idea	that	humans	have	any	grounds	for	discussion
of	an	ideal	world	beyond	what	can	be	extrapolated	in	a	reasonable	manner	from
what	we	experience	with	our	five	senses,	Russell	was	convinced	that	“what
appears	as	Platonism	is,	when	analyzed,	found	to	be	in	essence
Pythagoreanism.”	It	was	from	Pythagoras	that	Plato	got	the	“Orphic	elements”	in
his	philosophy,	“the	religious	trend,	the	belief	in	immortality,	the	other-
worldliness,	the	priestly	tone,	all	that	is	involved	in	the	simile	of	the	cave,	his
respect	for	mathematics,	and	his	intimate	intermingling	of	intellect	and
mysticism.”	Russell	blamed	Pythagoras	for	what	he	saw	as	Plato’s	view	that	the
realm	of	mathematics	was	a	realm	that	was	an	ideal,	of	which	everyday,	sense-
based,	empirical	experience	would	always	fall	short.



Russell’s	chapter	on	Pythagoras	was	part	of	a	hefty	tome	of	nearly	nine
hundred	pages,	his	1945	History	of	Western	Philosophy.	He	wrote	it	to	appeal	to
a	wide,	nonacademic	readership,	but	it	was	no	innocent	survey	without	an
agenda.	His	fascination	with	language,	with	analyzing	it	down	to	its	minimum
requirements,	transforming	sentences	into	equations	to	wring	from	them	the
most	trimmed-down,	unmistakable	message	possible,	had	made	him	a	master	at
the	manipulation	of	language,	and—it	must	be	said—the	manipulation	of
readers.	Careless	reader	he	sometimes	was,	and	sometimes	careless	thinker,	but
hardly	ever	careless	writer.	His	chapter	about	Pythagoras	is	peppered	with
tongue-in-cheek	understatements,	making	it	easy	to	miss	the	fact	that	he
intended	this	clever,	seductive,	amusing	prose	to	undermine	not	only	some	of	the
prized	tenets	of	the	mathematical	sciences	but	also	belief	in	God.

The	book	traced	philosophy	from	Thales	to	himself,	and	Russell	tried	to
show	how	this	long	history	had	culminated	in,	and	finally	found	a	corrective	in,
his	own	philosophy.	In	this	context,	he	did	not	treat	Pythagoras	as	just	one	more
philosopher	in	the	table	of	contents.	The	book’s	final	paragraph,	long	past	the
chapter	devoted	entirely	to	Pythagoras,	states:	“I	do	not	know	of	any	other	man
who	has	been	as	influential	as	he	was	in	the	sphere	of	thought.”	The	co-author	of
Principia	Mathematica,	Alfred	North	Whitehead,	also	believed	Pythagoras’
influence	had	been	tremendous,	the	very	bedrock	of	European	philosophy	and
mathematics.

Russell	agreed	with	those	who	thought	that	Pythagoras	was	the	first	to	use
mathematics	as	“demonstrative	deductive	argument,”	rather	than	merely	a
practical	tool	of	commerce	and	measurement.	This,	he	thought,	made	Pythagoras
a	founding	father	of	the	line	of	mathematical	thinking	that	would	lead	to	all	of
modern	mathematics	including	his	own.	“Pythagoras	was	intellectually	one	of
the	most	important	men	that	ever	lived,	both	when	he	was	wise	and	when	he	was
unwise,”	Russell	wrote.	“Unwise”	referred	to	the	fact	that	Pythagoras	and
Pythagoreanism	seemed	to	Russell	also	to	have	had	a	mystical	side,	and	when
that	encouraged	Plato	to	introduce	the	Forms,	the	inheritance	went	sour.

Just	as	other	sciences	had	their	roots	in	false	beliefs—astronomy	in
astrology;	chemistry	in	alchemy—mathematics,	wrote	Russell,	had	begun	with
“a	more	refined	type	of	error,”	the	belief	that	although	mathematics	is	certain,
exact,	and	applicable	to	the	real	world,	it	nevertheless	can	be	done	by	thought
alone	with	no	need	to	observe	the	real	world.	He	had	a	point.	Think	of	the	ten-
body	cosmos.	Even	though	the	Pythagoreans	discovered	the	ratios	of	musical
harmony	by	listening	(one	of	the	senses)	and	observing	where	they	were	putting
their	fingers	on	the	strings	of	the	lyre	(involving	both	sight	and	touch),	they
proceeded	in	an	unfortunate	way	that	involved	trusting	thought,	not	checked	by



proceeded	in	an	unfortunate	way	that	involved	trusting	thought,	not	checked	by
observation.	What	Russell	insisted	had	emerged	as	a	result	was	a	view	of	the
realm	of	mathematics	as	an	ideal	from	which	sense-based,	empirical	knowledge
would	always	fall	short.	Once	that	was	in	the	air,	lamented	Russell,	goodbye	to
the	idea	that	observation	of	the	real	world	was	a	useful	guide	to	truth.

Plato,	as	interpreted	by	Russell,	had	believed	that	anyone	on	a	quest	for	truth
had	to	reject	all	empirical	knowledge	and	regard	the	five	senses	as
untrustworthy,	even	false	witnesses.	Absolute	justice,	absolute	beauty,	absolute
good,	absolute	greatness,	absolute	health,	“the	essence	and	true	nature	of
everything”—the	only	way	to	reach	that	level	of	knowledge	was,	Plato	had
Socrates	say,	by	means	of	“the	mind	gathered	into	itself.”3	Actually,	there	is	no
record	of	Pythagoras,	or	pre-Platonic	Pythagoreans,	insisting	that	truth	about	the
universe	must	be	discovered	by	thought	alone,	but,	to	Russell’s	mind—although
it	was	Plato	who	articulated	the	idea—its	source	was	the	Pythagoreans;	it	was
implicit	in	the	way	they	thought	and	the	conclusions	they	reached.	Russell	was
convinced	that	the	idea	of	the	superiority	of	thought	and	intellect	over	direct
sense	observation	of	the	world	would	not	have	emerged	at	all	had	it	not	been	for
the	combination	of	the	Pythagorean	view	of	numbers	and	Plato’s	idea	of	Forms,
which	together	created	an	unfortunate	legacy	that	endures	to	the	present	and	that
has	motivated	people	to	look	for	ways	of	coming	closer	to	what	they	saw	as	the
mathematician’s	ideal.	“The	resulting	suggestions	were	the	source	of	much	that
was	mistaken	in	metaphysics	and	theory	of	knowledge.	This	form	of	philosophy
begins	with	Pythagoras.”



Bertrand	Russell

Having	read	Plato,	one	must	take	issue.	He	did	not	think	of	numbers	and
mathematics	as	Forms	or	“ideals”	at	all—not	even	as	a	sure	path	to	discovering
them.	In	his	creation	of	the	world-soul	in	his	Timaeus,	for	example,	and	when
Socrates	taught	about	“recollection”	in	the	Meno	by	drawing	the	square	and	the
isosceles	triangle	for	the	untutored	slave	boy,	mathematics	for	Plato	was	a	way
of	reaching	out	toward	the	ultimate	level	of	knowledge,	toward	the	Forms,	of
trying	to	get	there.	It	does	not	appear,	in	these	passages,	that	Plato	thought	he
was	there	or	that	numbers	and	mathematics	were	going	to	get	him	there.	His
pupils	later	thought	of	numbers	as	on	the	level	of	Forms,	but	even	they	did	not
necessarily	believe	human	thinkers	could	reach	that	level	of	mathematics.

Russell	had	another	objection	to	Pythagoras.	The	Pythagorean	insight	that
numbers	and	number	relationships	underlie	all	of	nature—not	created	or
invented	by	humans	but	discovered	by	them—was,	he	believed,	a	false	vision
and	an	enormous	and	tragic	misstep	in	the	history	of	human	thought.	Following
that	Pythagorean	fantasy,	mathematics	was	doomed	always	to	have	in	it	“an
element	of	ecstatic	revelation.”	“Revelation”	was,	for	Russell,	an	impossible
concept.	He	wrote	that	those	mathematicians	who	have	“experienced	the
intoxicating	delight	of	sudden	understanding	that	mathematics	gives,	from	time



to	time,”	find	the	Pythagorean	view	“completely	natural	even	if	untrue.”	In	this
he	was	ignoring	the	fact	that	neither	the	Pythagoreans	nor	any	major
mathematician	from	the	late	sixteenth	century	on,	not	even	the	ecstatically
religious	Kepler,	ever	claimed	to	have	received	a	mathematical	“revelation.”	But
Russell	equated	“discovery”	of	truth	with	“revelation,”	and	“revelation”	with
“illusion.”	With	that	equation	in	mind,	what	seemed	to	be	the	discovery	of	the
underlying	level	of	mathematical	reality	equaled	a	leap	of	faith	to	a	false	“ideal
world.”	And,	according	to	Russell,	that	idea	had	been	foisted	off	on	a	gullible
future.

Russell	nailed	all	this	down	by	attributing	to	the	“delighted	mathematicians”
a	different	idea	(though	many	mathematicians	would	disagree	with	it):	that
mathematics	is	something	created	by	mathematicians	in	the	same	way	that	music
is	something	created	by	composers.	This	could	have	been	an	insightful	parallel,
had	Russell	followed	up	on	it:	From	a	background	having	to	do	with	which	tones
and	meters	are	possible,	which	sounds	are	pleasant	and	which	not—and	much
else	that	one	might	discover	about	hearing,	sounds,	and	their	effect	on	human
emotions—a	composer	is	still	left	with	a	vast	number	of	choices.	The	result
depends	on	the	composer’s	creativity	and	inventiveness	in	using	basic,
unchangeable	material.	Perhaps	from	a	background	of	true	mathematical
possibilities,	a	mathematician	likewise	has	a	vast	number	of	choices.	Even	if	the
uncharted	territory	one	is	exploring	is	not	subject	to	choice	or	invention,	the
trails	leading	into	it	and	across	it	are	a	matter	of	choice	and	creativity.

Russell	had	something	else	in	mind.	He	was	opting	for	a	different
philosophy	of	mathematics,	that	mathematics	is	a	human	construction	to	impose
logical	order	on	the	universe	or	draw	a	map	through	territory	that	is	not
inherently	mathematical	at	all.	He	laid	twofold	blame	on	Pythagoras:	first,	for
the	Platonic	idea	that	there	is	a	realm	not	perceptible	to	human	senses	but
perhaps	to	human	intelligence,	and,	second,	for	the	belief	that	mathematicians
were	discovering	mathematical	truth,	not	inventing	it.	Because	numbers	are
eternal,	not	existing	in	time,	it	was	possible	to	conceive	of	numbers	and
mathematics	as	“God’s	thoughts,”	and	just	there,	said	Russell,	rooted	in
Pythagoreanism,	was	Plato’s	idea	that	God	is	“a	geometer.”	A	sort	of	“rational”
religion	had	come	to	dominate	mathematics	and	mathematical	method.

Russell	was	willing	to	concede	one	positive	outcome	from	the	Pythagorean
doctrine	of	a	universe	undergirded	with	rationality	and	mathematical	order:	It
had	led	people	to	be	dissatisfied	with	movements	in	the	heavens	that	were
irregular	and	complicated,	as	they	appear	to	a	naive	observer.	Such	a	messy
situation	was	not	“what	a	Pythagorean	creator	would	have	chosen,”	and	that
puzzle	had	led	astronomers	like	Ptolemy,	and	later	Copernicus	and	Kepler,	to



puzzle	had	led	astronomers	like	Ptolemy,	and	later	Copernicus	and	Kepler,	to
propose	systems	that	an	orderly	designer	would	have	preferred.

Russell	wrote	The	History	of	Western	Philosophy	before	the	discovery	of	the
scribal	tablets	that	showed	that	the	“Pythagorean”	theorem	was	known	long
before	Pythagoras.	Justifiably,	he	was	confident	in	calling	the	Pythagorean
theorem	the	“greatest	discovery	of	Pythagoras.”	He	sympathized	with	the
misfortune	of	the	Pythagoreans,	the	discovery	of	incommensurability.	He	had
reason	to	be	sympathetic,	for	during	his	lifetime	several	discoveries	occurred
that	seemed	to	undermine	his	own	efforts,	in	the	same	way	that	the	discovery	of
incommensurability	had	traditionally	undermined	Pythagorean	faith	that	the
world	was	based	on	rational	numerical	relationships.	One	of	the	discoveries	was
“Russell’s	paradox.”	He	was	trying	to	set	mathematics	on	a	better	track	by
seeking	to	found	it	on	logic,	with	one	true	mathematical	statement	implying	the
next.	However,	a	true	statement	sometimes	implies	more	than	one	next
statement.	Sometimes	it	implies	two	statements	that	contradict	one	another.*
That	paradox	was	no	trivial	snag.	Russell	wrote	a	letter	about	it	to	the	German
mathematician	and	logician	Gottlob	Frege,	who	received	it	as	he	was	completing
the	second	volume	of	a	treatise	on	the	logical	foundations	of	arithmetic	that	had
taken	twelve	years	of	painstaking	work.	Frege	responded	by	adding	the
following	sad	words	to	his	book:

A	scientist	can	hardly	meet	with	anything	more	undesirable	than
to	have	the	foundation	give	way	just	as	the	work	is	finished.	In
this	position	I	was	put	by	a	letter	from	Mr.	Bertrand	Russell	as	the
work	was	nearly	through	the	press.4

Russell	spent	some	time	in	his	chapter	on	Pythagoras	considering	the
problem	of	incommensurability.	He	thought	that	the	square	root	of	2,	being	the
simplest	form	of	the	problem,	was	the	“first	irrational	number	to	be	discovered”
and	that	it	was	known	to	early	Pythagoreans	who	had	found	the	following
ingenious	method	for	approximating	its	value.*	Suppose	you	have	drawn	an
isosceles	triangle,	the	one	Plato	used	in	his	Meno,	which	contains	the	problem	of
incommensurability.	Russell	thought	it	was	while	studying	this	triangle	that	the
Pythagoreans	came	upon	the	problem,	so	let	us	follow	his	thinking.

First,	review	the	problem.	The	Pythagorean	theorem	says	that	the	square	of
Side	A	plus	the	square	of	Side	B	will	equal	the	square	of	Side	C.	Say	that	Side	A
measures	1	inch.	Side	B	also	measures	1	inch.	The	square	of	1	is	1.	So	the	square
of	Side	A	plus	the	square	of	Side	B	(1	+	1)	equals	2.	If	the	Pythagorean	theorem
is	correct,	the	square	of	Side	C	must	likewise	be	2,	but	what	is	the	length	of	Side



C?	You	cannot	find	out	if	you	cannot	calculate	the	square	root	of	2.	Here	is	how
Russell	suggested	the	Pythagoreans	might	have	approximated	it:

Make	two	columns:	Column	A	and	B,	and	let	each	begin	with	the	number	1.
A					B

1						1

To	get	the	next	pair	of	numbers:

For	Column	A,	add	the	first	A	and	B	(1	+	1).
For	Column	B,	double	the	first	A	and	add	the	first	B	(2	+	1)

A					B

1						1

2						3

Continue	using	the	same	method	of	getting	the	next	pair	of	numbers,	always
using	the	two	previous	numbers	as	your	“former	A	and	B,”	and	you	soon	have:

A					B

1						1

2						3

5						7



12						17

29						41

70						99

For	each	pair	the	following	is	true:	2A	squared	minus	B	squared	equals	either	1
or	minus	1.	In	each	case,	B	divided	by	A	is	close	to	the	square	root	of	2,	and	the
farther	down	the	chart	you	move,	the	closer	it	is	to	the	square	root	of	2,	though	it
never	quite	gets	there	because	the	square	root	of	2	is	not	a	rational	number.
Would	this	have	satisfied	the	Pythagoreans?	One	cannot	help	thinking	that	for
people	who	believed	they	had	found	complete	rationality	and	simplicity	in	the
universe,	it	would	have	been	poor	consolation.

Russell	in	great	part	credited	Pythagoras	with	linking	philosophy	with
geometry	and	mathematics,	with	the	result	that	geometry	and	mathematics	had
been	an	influence	on	philosophy	and	theology	ever	since—an	influence	Russell
regarded	as	“both	profound	and	unfortunate.”	In	geometry,	as	Euclid	and	other
Greeks	established	it,	and	as	it	is	still	taught	today,	one	does	not	begin	in	a	void,
thinking	nothing	true	unless	proved.	There	are	statements	that	are	not	proved	but
are	“self-evident”	(or	at	least	seem	to	be),	called	axioms.	Some	bit	of	self-
evident	truth	must	be	there	as	the	starting	place.	That	may	seem	a	shaky
foundation	to	build	on,	but	many	generations	have	managed	to	accept	it	and
proceed.	Beginning	with	the	axioms,	the	next	step	is	to	use	deductive	reasoning
to	arrive	at	things	that	may	not	be	at	all	self-evident,	called	theorems.	Axioms
and	theorems	are	supposed	to	be	true	about	actual	space;	they	are	something	that
could	be	experienced.	In	other	words,	by	taking	something	self-evident	and
using	deductive	thinking	it	is	possible	to	discover	things	that	are	true	of	the
actual	world.

Russell	had	no	argument	with	this	line	of	thinking	in	geometry.	His	regret
was	that	it	been	applied	to	other	areas.	The	American	Declaration	of
Independence,	for	example,	declared,	“We	hold	these	truths	to	be	self-evident,”
on	the	assumption	that	there	are,	indeed,	things	having	nothing	to	do	with
geometry	or	mathematics	that	are	so	clearly	true	that	no	sane	person	would
question	them.	The	words	“self-evident”	were	one	of	Benjamin	Franklin’s
changes	in	the	draft	of	the	Declaration.	Thomas	Jefferson	had	written,	“We	hold
these	truths	to	be	sacred	and	undeniable,”	a	less	down-to-earth	version	of	the
same	idea.	The	point	was	that	everyone	could	proceed	from	there	without
looking	back.	But	could	they?

Russell	was	not	really	trying	to	undermine	Franklin,	but	he	was	disgruntled
that	the	process	by	which	geometry	is	done	had	been	co-opted	not	only	by



that	the	process	by	which	geometry	is	done	had	been	co-opted	not	only	by
brilliant	rebels	but	by	theologians.	Thomas	Aquinas	had	used	it	in	arguments	for
the	existence	of	God.	His	arguments	did	not	start	from	nothing,	but	rather	from
“first	principles.”	In	fact,	what	Aquinas	meant	by	“science”	was	a	body	of
knowledge	that	has	“first	principles”	or	“givens.”	Again,	Russell	blamed	the
Pythagoreans:	“Personal	religion	is	derived	from	ecstasy,	theology	from
mathematics;	and	both	are	to	be	found	in	Pythagoras.”	The	Pythagorean
marriage	of	mathematics	and	theology	had	polluted	the	religious	philosophy	of
Greece,	then	the	Middle	Ages,	and	so	on	through	Immanuel	Kant	and	beyond.	In
his	essay	“How	to	Read	and	Understand	History,”	Russell	lamented,

There	was	a	serpent	in	the	philosophic	paradise,	and	his	name
was	Pythagoras.	From	Pythagoras	this	outlook	descended	to
Plato,	from	Plato	to	Christian	theologians,	from	them,	in	a	new
form,	to	Rousseau	and	the	romantics	and	the	myriad	purveyors	of
nonsense	who	flourish	wherever	men	and	women	are	tired	of	the
truth.5

Russell	identified	some	characteristics	of	what	he	saw	as	a	blending	of
religion	and	reasoning,	of	“moral	aspiration	with	logical	admiration	of	what	is
timeless,”	in	Plato,	Augustine,	Thomas	Aquinas,	Descartes,	Spinoza,	and	Kant.
Their	offenses	were	belief	in	insight	or	intuition	as	a	valid	route	to	knowledge,	a
route	distinct	from	analytic	intellectual	processes;	denial	of	the	reality	of	time
and	the	passage	of	time	in	the	ultimate	scheme	of	things;	belief	in	a	unity	of	all
things	and	a	resistance	to	any	fragmentation	of	our	knowledge	of	the	world.	This
“philosophical	mysticism”—a	term	used	not	by	Russell	but	coined	by	the
physicist	John	Barrow—according	to	Russell	“distinguished	the	intellectualized
theology	of	Europe	from	the	more	straightforward	mysticism	of	Asia.”6
However,	he	believed	it	was	a	much	earlier	form	of	Eastern	mysticism	that	had
entered,	through	Orphism,	into	Pythagoreanism,	in	which	fertile	ground	it	had
taken	root	to	develop	into	the	intellectualized	but	still	partly	mystical	theology	of
Europe.

Russell	was	not	a	lone	voice.	He	was	one	of	the	founders	of	a	school	of
thought	called	logical	analysis,	an	effort	“to	eliminate	Pythagoreanism	from	the
principles	of	mathematics,”	ridding	it	of	“mysticism”	and	“metaphysical
muddles.”	He	and	those	who	joined	him	in	this	movement	refused	to	indulge	in
what	they	saw	as	“falsification	of	logic	to	make	mathematics	appear	mystical,
and	the	practice	of	passing	off,	as	authentic	intuitions	of	reality,	prejudices	about
what	is	real.”	Russell	also	tried	to	put	logic	to	work	in	an	attempt	to	clarify



what	is	real.”	Russell	also	tried	to	put	logic	to	work	in	an	attempt	to	clarify
issues	in	philosophy,	making	“logical	analysis	the	main	business	of	philosophy,”
rejecting	any	notion	that	moral	considerations	have	a	place	in	philosophy	or	that
philosophy	might	either	prove	or	disprove	the	truth	of	religious	doctrine.
Philosophy,	stripped	of	its	“dogmatic	pretensions,”	would	nevertheless	“not
cease	to	suggest	and	inspire	a	way	of	life.”

While	Russell	and	his	colleagues	recognized	there	were	questions	they	could
not	answer,	they	preferred	to	leave	them	unanswered	rather	than	cling	to	what
they	felt	were	foolish	and	misleading	“answers,”	or	believe	there	are	“higher”
sources	of	answers:

The	pursuit	of	truth,	when	it	is	profound	and	genuine,	requires
also	a	kind	of	humility	which	has	some	affinity	to	submission	to
the	will	of	God.	The	universe	is	what	it	is,	not	what	I	choose	that
it	should	be.	Towards	facts,	submission	is	the	only	rational
attitude,	but	in	the	realm	of	ideals	there	is	nothing	to	which	to
submit.7

Reading	that,	one	cannot	avoid	the	conclusion	that	Russell	was	far	more
ambivalent	about	the	issue	of	“discovery”	versus	“invention”	than	he	was
willing	to	admit.

Though	he	deplored	the	way	mathematics	had	been	“misused”	in	other
areas,	Russell	believed	that	what	he	was	insisting	philosophy	do—utilize	logical
analysis,	adopt	methods	of	science,	and	try	to	base	its	conclusions	on
impersonal,	disinterested	observations	and	inferences—should	be	applied	in	all
spheres	of	human	activity.	This	would	bring	about	a	decrease	of	fanaticism	and
an	increase	in	sympathy	and	mutual	understanding.	He	attempted,	with	scant
success,	to	apply	logical	analysis	to	fields	such	as	metaphysics,	epistemology,
ethics,	and	political	theory,	making	(ironically)	what	was	arguably	a
“Pythagorean”	leap	of	faith	that	what	seemed	to	be	a	good	idea	in	one	area	of
experience	would	be	a	good	idea	in	all.

Russell	decried	yet	another	aspect	of	the	Pythagorean	legacy:	The
Pythagoreans	lived	by	an	ethic	that	held	the	contemplative	life	in	high	esteem
and	had	bequeathed	to	the	future	something	he	called	“the	contemplative	ideal.”
In	the	fable	about	the	people	at	the	Olympic	Games,	Pythagoras	and	his
followers	were	in	the	third	group,	those	who	had	come	to	watch.	These
“onlookers”	celebrated	not	practical	but	“disinterested”	science—in	other	words,
they	were	disengaged	from	the	world	of	buying,	selling,	and	competing,	able	to
view	the	whole	scene	with	greater	objectivity—thinking	that	their	roles	as
independent	observers	placed	them	in	a	better	position	on	the	path	of	escape



independent	observers	placed	them	in	a	better	position	on	the	path	of	escape
from	the	eternal	circle	of	the	transmigration	of	souls.	Russell	contrasted	this
view	with	a	modern	set	of	values	that	sees	the	players	on	the	field	as	superior	to
mere	spectators,	and	that	admires	politicians,	financiers,	and	those	who	govern
the	state,	the	“competitors	in	the	game,”	above	those	who	keep	to	the	sidelines
and	watch	and	make	wise	observations.

Nevertheless,	said	Russell,	the	elevated	status	of	the	“gentlemanly	onlooker”
who	does	not	dirty	his	hands	has	endured,	and	this	began	in	ancient	Croton,	was
carried	forward	with	the	Greek	idea	of	genius,	then	with	the	monks	and	scholars
of	the	church,	and	later	with	the	academic	university	life.	He	criticized	all	these,
including	“saints	and	sages,”	who,	except	for	a	few	activists,	had	lived	on	“slave
labor,”	“or	at	any	rate	upon	the	labor	of	men	whose	inferiority	is	unquestioned.”
It	is	these	“gentlemen,”	these	“spectators	at	the	Games,”	he	lamented,	who	have
given	us	pure	mathematics,	and	that	contribution	has	meant,	for	them,	prestige
and	success	in	theology,	ethics,	and	philosophy,	because	pure	mathematics	is
generally	regarded	as	a	“useful	activity.”	Russell	did	not	mention	that	he	himself
was	one	of	these	gentlemen	he	was	criticizing—literally	so,	for	he	was	born	into
the	British	nobility,	studied	at	the	University	of	Cambridge	and	became	a	fellow
of	Trinity	College	there,	and	spent	most	of	his	life	as	an	academic	and	writer.
However,	he	did,	certainly,	become	one	of	the	activists	as	well.

Parodoxically,	Russell	believed	passionately	in	some	ideals	that	he	could	not
have	arrived	at	by	confining	himself	to	strict	empiricism,	deductive	thinking,	and
the	scientific	method.	Perhaps	his	intuitions	about	what	is	right	and	what	is
wrong	were,	indeed,	self-evident.	To	judge	from	his	writings,	these	ideals
became	for	him	a	higher	priority	than	his	logical	analysis.	He	was	a	pacifist
during	World	War	I,	and	this	unpopular	stand	cost	him	his	Cambridge
fellowship	and	landed	him	in	prison	for	a	while,	but	in	1939,	in	the	face	of	the
Nazi	threat,	he	renounced	pacifism.	He	was	a	lifelong,	outspoken	opponent	of
Nazism,	Soviet	communism,	and	belief	in	God.	He	campaigned	vigorously	for
nuclear	disarmament	and	against	the	Vietnam	War.	In	these	causes	he	was
superbly	able	to	write	essays	for	popular	readers	that	often	seemed	to	begin	as
polemics	but	ended	with	reasoned	arguments.

Russell	was	an	impassioned	and	influential	man,	who	recognized	that	there
was	a	directionality	built	into	human	beings	that	makes	us	at	least	seem	to	be
existing	somewhere	on	a	continuum	from	evil	to	good,	ugliness	to	beauty,
unfairness	to	justice,	mediocrity	to	greatness,	weakness	to	strength,	with	the
ultimate	in	every	case	being	off	the	scale,	over	the	horizon	of	human
comprehension	or	imagination.	In	his	espousal	of	a	mathematical	philosophy



that	would	soon	be	outdated,	but	still	more	in	the	positions	he	took	against
nuclear	weapons,	war,	and	what	he	saw	as	cruel	dogmatisms,	Russell,
paradoxically,	lived	by	this	Platonic,	perhaps	Pythagorean-based	view	of	the
world.	Ironically,	it	was	the	decisions	he	made	on	that	foundation	that	ultimately
made	him	memorable.

ARTHUR	KOESTLER’S	PICTURE	of	Pythagoras	was	far	more	positive.	Born	in
Budapest	in	1905,	Koestler	was	an	author	and	journalist	and	probably	the	most
widely	read	political	novelist	in	the	world	in	the	1940s	and	early	1950s.	His
writing	highlighted	the	moral	dilemmas	caused	by	the	rise	of	communism	and
the	two	world	wars.	Koestler,	like	Russell,	spent	time	in	prison.	While	serving	as
a	foreign	correspondent	in	Spain,	he	was	captured	by	Franco’s	troops	and
sentenced	to	death.	The	British	government	intervened	and	Koestler	was	able	to
return	to	London.	As	he	aged,	he	took	an	increasing	interest	in	science	and	the
history	of	ideas	and	knowledge.	His	1959	The	Sleepwalkers	was	a	masterpiece
when	it	came	to	splendid	writing	and	an	ability	to	convey	Koestler’s	passion	for
science,	scientists,	and	scientific	ideas.	It	was	the	first	in	a	trilogy	that	continued
in	1964	with	The	Act	of	Creation	and	in	1967	with	The	Ghost	in	the	Machine.
Koestler	died	in	1983.	He	was	suffering	from	leukemia	and	Parkinson’s	disease,
and	he	and	his	wife,	both	advocates	of	voluntary	euthanasia,	together	took	their
own	lives.

In	The	Sleepwalkers,	Koestler	wrote	of	Pythagoras:	“His	influence	on	the
ideas,	and	thereby	on	the	destiny,	of	the	human	race	was	probably	greater	than
that	of	any	single	man	before	or	after	him.”	Koestler	called	the	sixth	century	B.C.
a	“turning	point	for	the	human	species,”	a	“miraculous	century.”	It	was	also	the
century	of	Buddha,	Confucius,	and	Laotzu,	and	in	the	Greek	world,	Thales	and
Anaximander.	Still,	it	was,	in	a	sense,	like	an	orchestra	tuning	up,

each	player	absorbed	in	his	own	instrument	only,	deaf	to	the
caterwaulings	of	the	others.	Then	there	is	a	dramatic	silence,	the
conductor	enters	the	stage,	raps	three	times	with	his	baton,	and
harmony	emerges	from	the	chaos.	The	maestro	is	Pythagoras	of
Samos.

For	Koestler,	the	power	of	the	Pythagorean	vision	came	from	its	“all-
embracing,	unifying	character;	it	unites	religion	and	science,	mathematics	and
music,	medicine	and	cosmology,	body,	mind,	and	spirit	in	an	inspired	and
luminous	synthesis.”	“Cosmic	wonder	and	aesthetic	delight	no	longer	live	apart
from	the	exercise	of	reason,”	and	the	intuitions	of	religion	had	also	been	joined



to	the	whole	in	the	concept	of	a	scientific/philosophical	search	for	God.
Religious	fervor	had	been	channeled	into	intellectual	fervor,	“religious	ecstasy
into	the	ecstasy	of	discovery.”	Koestler	concluded	that	although	one	cannot
know	which	specific	discoveries	to	attribute	to	what	person	or	to	what	date,	it	is
clear	that	the	“basic	features	were	conceived	by	a	single	mind,”	making
Pythagoras	the	founder	of	“a	new	religious	philosophy	and	of	science	as	the
word	is	understood	today.”	In	fact,	the	transmigration	of	souls	itself	was	not	a
new	religious	philosophy,	and	Koestler	gave	a	long	description	of	Orphic
religion.	As	for	founding	science,	the	discovery	of	the	ratios	of	musical	harmony
was,	Koestler	said,	the	“first	successful	reduction	of	quality	to	quantity,	the	first
step	towards	the	mathematization	of	human	experience.”

According	to	Koestler,	the	reduction	of	experience	to	a	straitjacket	of
numbers	rightly	arouses	misgivings	in	the	modern	world,	but	for	the
Pythagoreans	it	did	not	diminish	or	impoverish	anything.	It	enriched	them.
Because	numbers	were	sacred	to	the	Pythagoreans,	reduction	to	numbers	did	not
mean	a	loss	of	“color,	warmth,	meaning,	and	value.”	Instead,	marrying	music	to
numbers	ennobled	music.	Koestler	may	be	correct,	but	one	could	also	reasonably
believe	that	the	Pythagoreans	did	not	think	numbers	were	sacred	until	they	had
made	the	discovery	of	their	connection	with	music.	Possibly	only	after	that	did
numbers	seem	to	them	to	have	the	marvelous,	immortal	qualities	that	Koestler
ecstatically	described,	and	come	to	be	regarded	as	a	link	between	humans	and
the	divine	mind.	Koestler	probably	would	have	liked	either	interpretation	equally
well.

Koestler	also	singled	out	the	idea	that	“disinterested	science	leads	to
purification	of	the	soul	and	its	ultimate	liberation”	as	a	major	contribution	of	the
Pythagoreans,	and	wrote	about	the	enormous	historical	importance	of	this	idea.
“Harnessing	science	to	the	contemplation	of	the	eternal,	entered,	via	Plato	and
Aristotle,	into	the	spirit	of	Christianity	and	became	a	decisive	factor	in	the
making	of	the	Western	world.”	Indeed	it	did	keep	the	feeble	flame	of	something
resembling	science	alive	during	the	Middle	Ages	and	caused	scholar-clerics	to
welcome	with	immense	thirst	and	enthusiasm	the	rediscovery	of	ancient
knowledge.	Through	the	time	of	Kepler	and	Galileo,	the	scientific	quest	and	the
quest	for	the	knowledge	of	God	were	considered	to	be	the	same	quest.

As	for	Pythagorean	secrecy,	Koestler	wrote	that	“even	a	lesser	genius	than
Pythagoras	might	have	realized	that	Science	may	become	a	hymn	to	the	creator
or	a	Pandora’s	box,	and	that	it	should	be	trusted	only	to	saints.”



Arthur	Koestler

Koestler	seductively	clothed	the	bare	skeletal	outline	of	Pythagoras	with	the
garments	of	creative	hindsight	and	beautiful	prose,	and	fashioned	a	legend	for
the	twentieth	century.	But,	remembering	the	little	ancient	community,	trapped	in
many	ways	in	the	thinking	of	that	time,	able—except	for	the	great	discovery	of
rationality	in	the	ratios	of	musical	harmony—to	make	only	feeble	attempts	to
link	numbers	with	nature	and	the	cosmos	and	creation,	believing	in	a	unity	of	all
being	that	there	was	no	way	to	demonstrate,	one	is	forced	to	conclude	that	he
was	looking	through	the	glasses	of	his	own	ideals.	Nevertheless,	his
interpretation	makes	wonderful	reading.	He	was	truly	the	master	of	the
magnificent	overstatement	that	sounds	so	beautiful	and	convincing	that	we	long
for	it	to	be	correct.	His	is	an	“ode	to	Pythagoras,”	or	an	orchestral	variation	on	a
brief,	sketchy	“theme	of	Pythagoras,”	but	it	resonates	better	than	any	other
existing	account	with	the	awe	with	which	the	modern	world—hardly	knowing
Pythagoras	at	all—nevertheless	regards	his	name.	Koestler’s	retelling	is	not
quite	the	truth	about	Pythagoras,	and	it	is	also	more	than	the	truth.	In	any	case,	it
is	Koestler’s	truth.

At	the	end	of	Koestler’s	chapter	about	Pythagoras,	there	are	two	statements
with	which	not	even	the	most	skeptical	scholars	would	disagree.	The	first	is	that



Pythagoreanism	had	the	“elastic”	quality	of	all	truly	great	systems	of	ideas,	the
“self-regenerating	power	of	a	growing	crystal	or	a	living	organism.”	The	second
is	that	the	Pythagoreans	were	probably	the	first	to	believe	that	mathematical
relations	hold	the	secrets	of	the	universe.	The	world,	concluded	Koestler,	“is	still
blessed	and	cursed	with	this	heritage.”	By	“cursed”	he	meant	that	the	modern
age	should	rightly	have	misgivings	about	the	reduction	of	experience	to	a
straitjacket	of	numbers.	The	Pythagorean	conviction	that	numbers	hold	the
secrets	of	the	universe	had	carried	us	magnificently	to	the	edges	of	time	and
space,	but	“our	hypnotic	enslavement	to	the	numerical	aspects	of	reality	has
dulled	our	perception	of	non-quantitative	moral	values;	the	resultant	end-
justifies-the-means	ethics	may	be	a	major	factor	in	our	undoing.”



CHAPTER	19

The	Labyrinths	of	Simplicity
Twentieth	and	Twenty-first	Centuries

THE	“SCIENTIFIC	METHOD”	as	it	is	taught	in	science	classrooms	and	practiced	by
scientists	all	over	the	world	is	not	very	old	when	compared	with	the	spans	of
time	covered	in	this	book.	It	emerged	in	the	seventeenth	century.	No	committee
put	it	together,	not	even	one	so	august	as	the	Royal	Society	of	London	for
Improving	Natural	Knowledge	or	the	French	Academy.	“Emerged”	is	the	correct
word.	In	their	day-to-day	labors,	Tycho	Brahe,	Galileo,	and	Johannes	Kepler
knew	no	“scientific	method.”	They	were	working	out,	by	trial	and	error,
employing	common	sense	and	genius,	how	science	from	their	time	forward	was
going	to	operate.	But	their	procedure	for	systematically	separating	what	is	true
from	what	is	not	had	not	yet	been	assigned	a	name	or	analyzed	precisely.	Little	if
any	consideration	was	given	to	the	fact	that	it	incorporated	and	rested	on
unproved	articles	of	faith	that	are	not	even	self-evident—principles	that	were
much	older	and	already	so	embedded	in	the	European	worldview	that	no	one
thought	to	debate	whether	they	were	valid.	Bertrand	Russell	might	lament	that
the	practice	of	building	on	some	truths	without	questioning	them	was	being
employed	in	other	areas	besides	geometry,	but	with	regard	to	science,	G.	K.
Chesterton	was	on	target	when	he	wrote,	“You	can	only	find	truth	with	logic	if
you	have	already	found	truth	without	it.”

From	a	twentieth-or	twenty-first-century	vantage	point—with	hindsight	and
knowledge	of	what	has	happened	since	the	seventeenth	century—it	is	easier	to
recognize	what	an	essential	role	the	Pythagorean	legacy	played	in	providing	this
basic	foothold	for	the	scientific	method	and	how	much	it	came	into	its	own	in
that	method.	The	conviction	that	the	universe	is	rational,	the	belief	in	underlying
order	and	harmony,	the	confidence	that	truth	is	accessible	by	way	of	numbers,
and	the	assumption	that	there	is	unity	to	the	universe	have	become	the	pillars
undergirding	science.	In	the	twentieth	century,	challenge	after	challenge	was
hurled	at	this	list,	by	investigators	and	by	nature	itself,	but	the	scientist	who	gets
up	and	goes	to	work	in	the	morning	does	so	largely	assuming	that	these	articles
of	faith	do	hold	true.	An	essentially	Pythagorean	faith	remains	as	instrumental	in
driving	science	as	the	Aristotelian	insistence	on	observation	and	experiment.
Indeed,	if	the	universe	is	not	rational	and	ordered,	if	numbers	are	not	a	reliable



guide,	if	there	is	no	unity	to	the	universe,	observation	and	experiment	are
shortsighted	and	futile	and	there	is	little	possibility	of	doing	science	at	all.	The
conclusion	is	inevitable:	Either	the	Pythagoreans	in	the	sixth	century	B.C.
brilliantly	and	prophetically	uncovered	truths	that	have	not	failed	to	hold	in	two
thousand,	five	hundred	years	.	.	.	or	their	persuasive	philosophy	has	for	all	these
centuries	pulled	the	wool	over	our	eyes	so	effectively	that	we	are	incapable	of
recognizing	and	following	up	on	evidence	that	would	expose	their	worldview	as
a	mirage	.	.	.	or	(a	third	possibility)	when	Arthur	Koestler	wrote	of	a	truly	great
system	of	ideas,	with	the	“self-regenerating	power	of	a	growing	crystal	or	a
living	organism,”	he	was	only	clothing	a	group	of	self-evident	ideas,	erroneously
traced	to	an	ancient	cult,	in	beautiful	language.

It	was	not	only	the	ancient	assumptions	underlying	modern	cutting-edge
science	that	made	the	twentieth	century	a	Pythagorean	century.	There	were	also
discoveries	that	caused	crises	of	faith	in	the	power	of	numbers	and	the	rationality
of	the	universe.

One	of	the	most	dramatic,	successful	stories	of	trusting	numbers	and
mathematics	as	guides	into	the	unknown	in	a	scientific	search	was	the	discovery
of	black	holes.	The	physicist	Stephen	Hawking	commented,	“I	do	not	know	any
other	example	in	science	where	such	a	great	extrapolation	was	successfully
made	solely	on	the	basis	of	thought.”1	The	“thought”	was	mathematical	thought.
By	the	mid-1960s	physicists	had	discovered	solutions	to	Albert	Einstein’s
equations	that	made	it	difficult	not	to	conclude	that	there	must	be	black	holes	in
the	universe,	even	though	there	was	no	observational	evidence	for	them.	By	the
mid-1980s,	confidence	ran	high	that	black	holes	did	indeed	exist,	and	there	were
several	“candidates,”	but	still	no	unequivocal	evidence.	It	was	not	until	the
1990s	that	there	was	convincing	observational	evidence	of	the	presence	of
several	black	holes	and	reason	to	conclude	that	there	are	many,	many	more.	Still,
the	evidence	was	indirect,	circumstantial.	The	discovery	of	a	black	hole	was	an
ingenious	collaboration	of	theory,	mathematics,	and	observational	astronomy.
But	there	is	now	little	question	that	black	holes	do	exist,	and	old	candidates	and
new	ones	are	not	difficult	to	evaluate.

The	nonexpert	public,	though	intrigued	by	such	discoveries	as	black	holes
and	eager	to	read	about	Stephen	Hawking,	has	not	been	so	entirely	convinced	by
the	power	of	mathematical	thinking	as	the	scientists,	nor	by	the	travelogues	into
the	wilds	of	physics	theory	that	these	experts	have	provided	for	those	who
cannot	follow	the	equations.	In	1988,	Hawking’s	first	wife,	Jane	Hawking,	told
an	interviewer,	“There’s	one	aspect	of	his	thought	that	I	find	increasingly
upsetting	and	difficult	to	live	with.	It’s	the	feeling	that,	because	everything	is



reduced	to	a	rational,	mathematical	formula,	that	must	be	the	truth.”2	One	could
well	imagine	the	wife	of	Pythagoras	saying	something	like	that.	Jane	Hawking
was	not	the	only	one	who	had	trouble	sharing	the	faith	in	mathematics	that	leads
the	thinking	of	theoretical	physicists.	Arthur	Koestler	deplored	“our	hypnotic
enslavement	to	the	numerical	aspects	of	reality.”

Writers	like	myself	who	explain	science	for	nonexpert	readers	are	often
approached	by	intelligent	people	who	have	read	of	such	things	as	the	extra
dimensions	of	physics	theory—sometimes	more	dimensions,	sometimes	fewer,
but	hardly	ever	just	the	three	of	space	and	one	of	time	that	humans	experience—
and	who	say,	“I	can	picture	it	easily	enough	the	way	you	describe	it,	the
dimensions	rolled	up	into	little	hose-like	tubes,	but	how	does	it	actually	link	with
reality?	Is	it	only	a	mathematical	reality?”	That	“only”	betrays	a	suspicion	that
mathematicians	and	physicists	immersed	in	their	own	Pythagorean	universe	are
at	a	loss	to	explain	away.	In	the	sixth	century	B.C.,	no	one	could	see	ten	bodies	in
the	heavens.	In	the	twenty-first	century,	not	only	can	no	one	see	the	extra
dimensions,	no	one	can	even	imagine	them.	Hawking	has	admitted	that	anyone
who	thinks	he	or	she	can	imagine	what	the	extra	dimensions	would	be	like	has
either	made	a	large	evolutionary	leap	in	mental	capacity	or	is	mistaken.	But	that
has	not	kept	theoretical	physicists	from	following	eagerly	the	paths	of	the
equations	in	which	such	things	do	make	sense.

Scientists	are	not	the	only	ones	who	adopt	a	Pythagorean	view	of	numbers
as	the	strongest	vehicles	on	the	avenue	to	truth	and	progress.	Pythagorean	faith
in	mathematics	shows	up	at	nearly	all	school	curriculum	meetings.	Though	no
one	proposes	resurrecting	the	quadrivium,	educators	seem	to	have	decided	that	a
child	who	can	talk	and	read	and	calculate	holds	the	essential	keys	to	all
knowledge,	and	many	would	argue	that	the	third—“calculate”—is	potentially	the
most	powerful	by	far.	Music	has,	however,	tended	to	fall	by	the	wayside.

When	Hawking	wrote	in	the	late	twentieth	century	about	his	high	hopes	that
he	and	others	would	find	the	Theory	of	Everything	that	would	unify	all	of
physics,	and	when	he	brought	that	quest	into	the	public	mind	in	his	Brief	History
of	Time—even	for	those	who	only	read	about	that	book—he	was	expressing
another	Pythagorean	theme.	Many	physicists	were	hoping,	indeed	expecting,
complete	knowledge	of	the	universe	to	turn	out,	ultimately,	to	be	unified,
harmonious,	and	simple.	This	hope	was	not	based	only	on	wishful	thinking.
Listen,	for	example,	to	the	way	the	physicist	Richard	Feynman	traced	its	history.

There	was	a	time,	wrote	Feynman,	when	we	had	something	we	called
motion	and	something	else	called	heat	and	something	else	again	called	sound,



but	it	was	soon	discovered,	after	Sir	Isaac	Newton	explained	the
laws	of	motion,	that	some	of	these	apparently	different	things
were	aspects	of	the	same	thing.	For	example,	the	phenomena	of
sound	could	be	completely	understood	as	the	motion	of	atoms	in
the	air.	So	sound	was	no	longer	considered	something	in	addition
to	motion.	It	was	also	discovered	that	heat	phenomena	are	easily
understandable	from	the	laws	of	motion.	In	this	way,	great	globs
of	physics	theory	were	synthesized	into	a	simplified	theory.3

In	the	early	twentieth	century,	physics	seemed	to	be	coming	together	in	a
thoroughly	Pythagorean	unity.	Einstein	unified	space	and	time	and	explained
gravity	in	a	way	that	the	physicist	John	Archibald	Wheeler	could	encapsulate	in
one	short	sentence:	“Spacetime	grips	mass,	telling	it	how	to	move;	mass	grips
spacetime,	telling	it	how	to	curve.”4	Einstein’s	theory	of	special	relativity	could
be	summarized	in	an	equation	on	a	T-shirt:	E	=	mc2.	The	Russian	mathematician
Alexander	Friedmann	predicted	that	anywhere	we	might	stand	in	the	universe
we	would	see	the	other	galaxies	receding	from	us,	just	as	we	do	from	Earth,	and
better	understanding	of	the	expansion	of	the	universe	has	shown	he	was
undoubtedly	right,	although	no	one	has	been	able	to	try	it	yet.	Just	as	Nicholas	of
Cusa	thought	in	the	fifteenth	century,	the	universe	is	homogenous.

Two	of	four	forces	of	nature	known	to	underlie	everything	that	happens	in
the	universe—the	electromagnetic	force	(already	a	unification)	and	the	weak
nuclear	force—were	combined	by	the	“electroweak	theory”	in	the	early	1980s.
There	was	also	work	going	on	that	promised	to	show	that,	if	we	could	observe
the	extremely	early	universe,	it	would	be	obvious	that	all	four	forces	were
originally	united	and	that	nature	was	composed	of	symmetries	well	concealed	in
our	own	era	of	the	universe’s	history.	James	Watson	and	Francis	Crick	and	their
colleagues	discovered	the	simple	pattern	of	the	structure	of	DNA,	the	double
helix.	Those	who	were	insisting	that	Darwin’s	nineteenth-century	theory	of
evolution	was	no	threat	to	religious	faith	were	pointing	out	that	it	was	difficult	to
imagine	anything	that	could	more	eloquently	support	the	conviction	that	there
was	a	brilliant	and	unified	(and	some	would	add,	pitiless)	rationality	behind	the
universe.	John	Archibald	Wheeler	wrote	his	essentially	Pythagorean	poem:

Behind	it	all
is	surely	an	idea	so	simple,
so	beautiful,



so	compelling	that	when—
in	a	decade,	a	century,
or	a	millennium—
we	grasp	it,
we	will	all	say	to	each	other,
how	could	it	have	been	otherwise?
How	could	we	have	been	so	stupid
for	so	long?

All	was	not,	however,	a	story	of	undiluted	success	for	the	Pythagorean
vision	of	a	“unity	of	all	being.”	Einstein,	a	firm	believer	in	the	unity	of	nature,
spent	thirty	years	trying	to	construct	a	theory	that	would	explain
electromagnetism	in	terms	of	spacetime,	as	he	had	explained	gravity.	He	never
succeeded,	and	many	physicists	would	blame	his	failure	in	part	on	the	fact	that
he	so	stubbornly	refused	to	admit	quantum	mechanics	into	the	picture.	But	a	new
theory,	called	string	theory,	that	saw	the	elementary	particles	as	tiny	strings	or
loops	of	string	and	that	certainly	had	no	qualms	about	accepting	quantum
mechanics,	was	gaining	supporters	in	the	1980s.	It	offered	hope	of	doing	what
Einstein	had	failed	to	do:	gathering	into	the	fold	the	most	rebellious	of	the	four
forces	(when	it	came	to	unification)—gravity.	As	the	first	decade	of	the	twenty-
first	century	progressed,	however,	physicists	were	becoming	impatient	with
string	theory.	It	had	been	able	to	come	up	with	no	prediction	that	could	be	tested
in	a	way	that	would	show	whether	the	theory	was	correct.	Aristotle	would	have
been	happier	with	this	development	than	Pythagoras	or	Plato,	not	because
Aristotle	wanted	to	tear	down	theories,	but	because	twenty-first-century
mathematical	physicists	were	clearly	not	out	of	touch	with	the	need	for	truth	to
be	linked	with	the	perceptible	world.	However,	even	with	string	theory	looking
less	promising	than	it	had,	no	one	really	questioned	the	essential	unity	of	the
universe.

Such	faith	is	hard	to	lose,	especially	when	no	evidence	definitively	shows
that	it	is	wrong.	However,	some	serious	mathematical	and	scientific	blows	to
Pythagorean	convictions	have	occurred	during	the	past	one	hundred	years.
Humans	seem	fated	to	discover	again	and	again	that	the	universe	is	not	so
rational	after	all—at	least,	not	by	the	best	current	human	standards	of	rationality.
Such	discoveries	have	challenged	and	stretched	scientists	to	dig	deeper	in	search
of	a	level	of	reality	where	the	Pythagorean	principles	still	hold.	One	of	the
greatest	manifestations	of	symmetry,	harmony,	unity	and	rationality	in	the
universe	is	the	fact	that,	although	drastic	changes	do	occur	over	time	and	from



universe	is	the	fact	that,	although	drastic	changes	do	occur	over	time	and	from
situation	to	situation,	and	although	things	can	look	dramatically	different	in
different	parts	of	the	universe—and	act	in	what	even	seem	contradictory	ways—
the	underlying	laws	that	govern	how	change	occurs	apparently	do	not	change.
Maybe	this	is	convincing	evidence	that	our	Pythagorean	assumption	of	unity	is
correct,	or	it	might	be	that	our	assumption	is	leading	us	to	a	false	impression.	We
can	only	answer	by	pointing	to	past	experience.

The	search	for	a	more	fundamental	law	often	begins	with	the	discovery	that
something	that	has	seemed	fundamental	and	unchanging	fails	to	hold	under
some	circumstances.	When	that	happens,	the	Pythagorean	assumption	of	unity
and	symmetry	kicks	in	and	compels	everyone	to	conclude	that	whatever	it	is
they	have	been	regarding	as	bedrock	is	not	that	at	all.	It	is	merely	an
approximation.	Researchers	put	their	noses	back	to	the	grindstone	and	explore
for	a	deeper	underlying	law	that	does	not	change.

There	have	been	many	examples	of	this	process	of	discovery.	Newton’s
laws	of	gravity	hold	true	except	when	movement	approaches	the	speed	of	light
or	when	gravity	becomes	enormously	strong,	as	it	does	near	a	black	hole.
Einstein’s	newer,	more	fundamental	description	in	terms	of	spacetime	does	not
break	down,	as	Newton’s	laws	do,	in	these	extreme	circumstances.	But
Einstein’s	description	also	presents	problems	that	challenge	the	assumption	of
unity	and	harmony.	They	predict	that	there	will	be	singularities—points	of
infinite	density—at	the	origin	of	the	universe	and	at	the	center	of	black	holes.	At
a	singularity,	all	the	laws	of	physics	break	down.	And	so	the	search	must	go	on
for	a	more	fundamental	set	of	laws,	on	the	Pythagorean	assumption	that	at
absolute	bedrock	there	are	laws	that	break	down	in	no	situations	whatsoever.
The	underlying	unchanging	laws,	whatever	they	are,	and	the	nearest	approaches
to	them	that	have	been	found,	do	obviously	allow	a	vast	range	of	changes	and
events	to	occur,	a	vast	range	of	behavior	and	experience.	How	far	we	have	come
from	the	early	Pythagoreans,	as	they	hurriedly	and	superficially	applied	this
same	faith	in	numbers!	How	unfathomably	deep	beyond	their	imagination	the
true	connections	lie!	Beyond	ours,	too,	perhaps.

The	first	challenge	to	the	Pythagorean	assumption	of	rationality	in	the
universe	to	occur	in	the	twentieth	century	was	Russell’s	paradox,	the	discovery
of	Bertrand	Russell	that	was	discussed	in	Chapter	18.	That	happened	early,	in
1901.	Another,	in	1931,	was	Austrian	Kurt	Gödel’s	“incompleteness	theorem.”
Gödel	was	then	a	young	man	working	in	Vienna;	he	would	later	join	Einstein	at
the	Institute	for	Advanced	Study	in	Princeton.	Gödel’s	discovery	was	that	in	any
mathematical	system	complex	enough	to	include	the	addition	and	multiplication
of	whole	numbers—hardly	fringe	territory;	any	schoolchild	is	familiar	with	that



—there	are	propositions	that	can	be	stated,	that	we	can	see	are	true,	but	that
cannot	be	proved	or	disproved	mathematically	within	the	system.	This	means
that	all	significant	mathematical	systems	are	open	and	incomplete.	Truth	goes
beyond	the	ability	to	prove	that	it	is	true.	Gödel	also	showed	that	it	is	not
possible	to	prove	whether	or	not	any	system	rich	enough	to	include	addition	and
multiplication	of	whole	numbers	is	self-consistent.

These	discoveries	constituted	a	serious	reversal	of	hopes	for	some,	and	a
serious	undermining	of	assumptions	for	others.	The	great	mathematician	David
Hilbert	and	his	colleagues	had	previously	been	able	to	demonstrate	that	logical
systems	less	complex	than	arithmetic	were	consistent,	and	it	seemed	certain	that
they	would	be	able	to	go	on	to	demonstrate	the	same	for	all	of	arithmetic.	Not	so.
With	Gödel,	the	soaring	Pythagorean	staircase	to	sure	knowledge,	built	of
numbers,	became	something	more	resembling	a	staircase	in	an	Escher	drawing,
and	it	is	no	wonder	that	the	most	famous	book	about	Gödel	is	Douglas	R.
Hofstadter’s	Gödel,	Escher,	Bach.	The	Bach	is	Johann	Sebastian	Bach.	Bertrand
Russell	was	one	of	those	who	were	badly	shaken	by	Gödel’s	theorems—
particularly	so	because	he	misread	Gödel	and	thought	he	had	proved	that
arithmetic	was	not	incomplete	but	inconsistent.	Instead,	Gödel	had	demonstrated
that	no	one	ever	would	be	able	to	prove	whether	it	was	consistent	or	not.	David
Hilbert	was	not	so	discouraged	as	Russell:	Until	his	death	in	1943,	he	refused	to
recognize	that	Gödel	had	put	paid	to	his	hopes.	The	influence	of	Gödel’s
discoveries	was	profound,	and	yet,	on	one	level,	rather	inconsequential.	As	John
Barrow	wrote	in	1992,	“It	loomed	over	the	subject	of	mathematics	in	an
ambiguous	fashion,	casting	a	shadow	over	the	whole	enterprise,	but	never
emerging	to	make	the	slightest	difference	to	any	truly	practical	application	of
mathematics.”5

Though	Gödel’s	discoveries	may	have	undermined	some	forms	of	faith	in
mathematics,	in	a	manner	that	seemed	to	resemble	the	Pythagorean	discovery	of
incommensurability,	Gödel’s	view	of	mathematics	was,	in	fact,	Pythagorean.	He
believed	that	mathematical	truth	is	something	that	actually	exists	apart	from	any
invention	by	human	minds—that	his	theorems	were	“discoveries”	about
objective	truth,	not	his	own	creations.

This	was	not	a	popular	idea	in	the	1930s.	Many	mathematicians	disagreed.
In	fact,	the	concept	of	anything	existing	in	an	objective	sense—waiting	out	there
to	be	discovered	and	not	in	any	way	influenced	by	the	actions	of	the	investigator
—had	been	called	into	question	by	a	development	in	physics.	A	far	more
dramatic	and	far-reaching	crisis	than	the	one	caused	by	Gödel’s	incompleteness
theorem	had	occurred	in	the	1920s	and	was	having	a	profound	effect	on	the	way



scientists	and	others	viewed	the	world.	It	was	the	discovery	of	the	uncertainty
principle	of	quantum	mechanics.

The	way	cause	and	effect	work	had	long	seemed	good	evidence	that	the
universe	is	rational.	It	also	seemed	that	if	cause	and	effect	operate	as	they	do	on
levels	humans	can	perceive,	they	surely	must	operate	with	equal	dependability	in
regions	of	the	universe,	or	at	levels	of	the	universe,	that	are	more	difficult—or
even	impossible—to	observe	directly.	Cause	and	effect	could	be	used	as	a	guide
in	deciding	what	happened	in	the	very	early	universe	and	what	conditions	will	be
like	in	the	far	distant	future.	No	one	was	thinking	of	belief	in	cause	and	effect	as
a	“belief”	at	all,	though,	in	fact,	there	was	nothing	to	prove	that	cause	and	effect
would	not	cease	to	operate	in	an	hour	or	so,	or	somewhere	else	in	the	universe.
Then,	in	the	1920s,	came	developments	that	required	reconsideration	of	the
assumption	that	every	event	has	an	unbroken	history	of	cause	and	effect	leading
up	to	it.

The	quantum	level	of	the	universe	is	the	level	of	the	very	small:	molecules,
atoms,	and	elementary	particles.	It	is	on	that	level	that	a	commonsense
description	breaks	down.	Here	there	are	uncaused	events,	happenings	without	a
history	of	the	sort	it	is	normally	assumed	any	event	must	have.	Atoms	are	not
miniature	solar	systems.	You	cannot	observe	the	position	of	an	electron	orbiting
the	nucleus	and	predict	where	it	will	be	at	a	later	given	moment	and	what	path	it
will	take	to	get	there	or	say	where	it	was	an	hour	ago—as	you	could	with	fair
accuracy	for	the	planet	Mars	in	the	solar	system.	An	electron	never	has	a	definite
position	and	a	definite	momentum	at	the	same	time.	If	you	measure	precisely	the
position	of	a	particle,	you	cannot	at	the	same	time	measure	its	momentum
precisely.	The	reverse	is	also	true.	It	is	as	though	the	two	measurements—
position	and	momentum—are	sitting	at	opposite	ends	of	a	seesaw.	The	more
precisely	you	pin	down	one,	the	more	up-in-the-air	and	imprecise	the	other
becomes.	This	is	the	Heisenberg	uncertainty	principle	of	quantum	physics—the
twentieth	century’s	“incommensurability.”	It	was	first	articulated	by	Werner
Heisenberg	in	1927.	Not	only	did	it	undermine	faith	in	a	rational	universe,	it	also
seemed	to	undermine	the	notion	that	truth	was	something	objective,	something
waiting	out	there	to	be	discovered.	On	the	quantum	level,	your	measurement
affects	what	you	find.

On	the	other	hand,	the	existence	of	quantum	uncertainty	itself	was
apparently	a	very	unwelcome	piece	of	objective	truth	waiting	out	there	that	no
physicist	could	change,	as	much	as	he	or	she	might	wish	to,	no	matter	what
observational	methods	he	or	she	used.	Einstein	in	particular	rebelled	at	the
notion	that	no	future	advance	in	science	and	no	improvement	in	measuring



equipment	was	ever	going	to	resolve	this	uncertainty.	Until	his	death,	he	went	on
trying	to	devise	thought	experiments	to	get	around	it.	He	never	succeeded,	nor
has	he	succeeded	posthumously	as	others	have	found	ways	to	carry	out
experiments	he	invented	in	his	head.	“God	does	not	play	dice!”	Einstein	wrote
on	one	occasion	to	Niels	Bohr,	who	was	far	more	ready	to	accept	quantum
uncertainty	than	Einstein.	“Albert,	don’t	tell	God	what	he	can	do!”	Bohr
answered.	The	Bohr-Einstein	debate	about	how	to	interpret	the	quantum	level	of
the	universe	continued	and	became	famous.

It	is	easy	to	sympathize	with	Einstein.	The	quantum	world	and	the	paradoxes
implicit	in	it	did	not	seem	to	be	the	work	of	a	rational	mind.	Einstein	might	have
rephrased	the	complaint	Kepler	registered	when	faced	with	a	similar	problem:
“Heretofore	we	have	not	found	such	an	ungeometrical	conception	in	His	other
works!”	How	could	what	happened	to	one	particle	affect	another	over	time	and
space	with	no	link	between	them?	How	could	a	cat	be	both	dead	and	alive	at	the
same	time—as	one	had	to	accept	in	the	famous	example	of	“Schrödinger’s	cat”?
How	could	something	be	a	wave	some	times	and	a	particle	at	others,	depending
on	the	experimental	situation?	It	was	a	Through	the	Looking	Glass	world—and
still	is,	in	spite	of	the	reassurance	that	it	is	possible	to	predict	things	on	the
quantum	level	of	the	universe,	if	one	can	be	satisfied	with	probabilities.	It	does
seem	that	the	staircase	to	knowledge	about	the	universe	can	have	a	firm	footing
on	the	quantum	level,	with	probabilities	forming	a	sort	of	superstructure	above
the	quagmire.	All	is	far	from	lost	for	the	Pythagorean	climb.

The	dawning	awareness	of	a	new	aspect	of	the	universe,	in	chaos	and
complexity	theories	developed	later	in	the	twentieth	century,	was	not	nearly	so
great	a	shock	as	quantum	uncertainty.	However,	it	did	seem	to	hint	that	science
had	been	discovering	one	orderly,	predictable	system	after	another	only	because
it	was	impossible	or	at	least	terribly	discouraging	to	try	to	study	any	other	kind
of	system	in	a	meaningful	fashion.	The	relatively	easy	to	study	predictable
systems	actually	turned	out	to	be	the	exception	rather	than	the	rule.	But	for	those
of	a	Pythagorean	cast	of	mind,	it	was	the	discoveries	of	the	repeating	patterns	in
chaos—the	pictures	deep	in	the	Mandelbrot	and	Julia	sets,	and	also	in	nature
itself—that	gloriously	seemed	to	uphold,	as	never	before,	the	ancient	conviction
that	beauty	and	harmony	are	hidden	everywhere	in	the	universe	and	have
nothing	to	do	with	any	invention	of	humans.	Less	immediately	mind-boggling,
but	no	less	impressive,	was	the	realization	in	the	study	of	chaos	and	complexity
that	there	seem	to	be	mysterious	organizing	principles	at	work.	There	are
probabilities,	but	by	some	calculations	they	are	vanishingly	low,	that	the
universe	would	have	organized	itself	into	galaxies,	stars,	and	planets;	that	life	on



this	earth	would	have	been	organized	into	ecosystems	and	animal	and	human
societies.	Yet	that	is	what	has	happened.	Thus,	as	with	the	other	challenges	to
faith	in	the	Pythagorean	assumptions	underlying	science,	when	scientists	began
to	get	a	handle	on	chaos	and	complexity,	the	theories	having	to	do	with	them
became	not	threats	but	new	avenues	in	the	search	for	better	understanding	of
nature	and	the	universe.

Twentieth-century	“postmodern”	thinking,	combined	with	suspicions	raised
by	the	discovery	of	quantum	uncertainty	and	our	inability	to	examine	the
quantum	world	without	affecting	it,	led	to	fresh	doubts	about	other	Pythagorean
pillars	of	science.	Is	there	really	such	a	thing	as	objective	reality?	Is	anything
real,	waiting	to	be	discovered?	Does	the	fact	that	science	continues	to	discover
things	that	make	sense,	and	suspects	or	dismisses	anything	that	does	not,	mean
that	we	are	finding	out	more	and	more	about	a	rational	universe	.	.	.	or	only	that
we	are	selecting	the	information	and	discoveries	that	fit	our	very	Pythagorean
expectations?

The	assumption	of	rationality	lies	at	the	root	of	modern	arguments	about
“intelligent	design.”	It	is	true	that	the	world’s	design,	as	the	Pythagoreans	found
out,	is	intelligent	to	a	degree	that	would	send	any	discoverer	of	a	new
manifestation	to	his	or	her	knees—but	before	what,	or	whom?	Does	discovering
rationality	necessarily	mean	one	has	glimpsed	the	Mind	of	God?	On	the	other
hand,	does	a	good	scientist	have	to	repress	the	strong	impression	that	it	does?
Those	who	attack	belief	in	God	do	so	from	several	directions.	One	is	rather	old-
fashioned	now,	but	still	heard:	Everything	is	so	perfectly	laid	out,	in	so	tight	and
orderly	a	design,	that	there	is	no	room	for	God	to	act	at	any	point.	It	all	goes	like
clockwork.	Or,	a	newer	argument:	Everything	happens—and	has	always
happened—entirely	by	chance.	The	impression	of	any	underlying	rationality	in
nature	is	an	illusion.	The	“anthropic	principle”	says	that	if	things	had	not	fallen
out	just	the	way	they	have,	we	could	not	be	here	to	observe	them—and	that	is
the	only	reason	we	find	a	universe	that	is	amenable	to	our	existence.	Or	.	.	.	our
entire	picture	of	the	universe	is	created,	by	us,	in	the	self-centered	image	of	our
own	minds,	and	we	are	discovering	something	not	far	different	from	the	ten
heavenly	bodies	of	the	Pythagoreans.	Plato	might	have	enjoyed	the	late-
twentieth-century	discussions	about	whether	mathematical	rationality	might	be
powerful	enough	to	create	the	universe,	without	any	need	for	God.	Quantum
theory	made	possible	the	suggestion	that	“nothingness”	might	have	been
unstable	in	a	way	that	made	it	statistically	probable	that	“nothingness”	would
decay	into	“something.”

Pythagorean	principles	and	issues	also	showed	up	in	other	ways	in



twentieth-century	culture.	Peter	Shaffer’s	trilogy	of	plays	The	Royal	Hunt	of	the
Sun,	Equus,	and	Amadeus	were	all	profound	explorations	of	the	theme	of
rationality	and	irrationality	and	reflected	the	sort	of	love/hate	humanity	has	for
both:	Is	there	a	Mind	behind	the	universe?	Is	that	Mind	sane	or	mad?	Tennessee
Williams	dubbed	the	so-called	“rationality”	of	God	the	rationality	of	a	senile
delinquent.	In	music,	“twelve	tone”	compositions	were	the	most	mathematically
bound	compositions	ever	written,	but	this	form	of	music	was	also	clear	evidence
that	the	Pythagorean	insight	had	been	correct	that	certain	combinations	of	tones
—and	only	certain	combinations—have	a	deep	link	with	what	the	human	ear
recognizes	as	harmonious	and	beautiful.	On	Sesame	Street,	numbers	came	to	life
and	danced	and	sang	in	a	way	that	probably	would	have	delighted	the
Pythagoreans—if	they	did	not	find	it	irreverent—but	probably	would	have
annoyed	Aristotle.

The	music	of	the	spheres	remained	a	popular	metaphor,	but	in	the	second
half	of	the	century	it	moved	beyond	the	“spheres.”6	As	Richard	Kerr	has	put	it,
“the	idea	of	heavenly	harmonics	is	now	making	a	comeback	among	astronomers.
Instead	of	listening	to	the	revolutions	of	the	spheres,	modern	astronomers	are
tuning	in	to	the	vibrations	within	stars.”7

In	1962,	astronomers	studying	the	Sun	discovered	that	sound	waves
traveling	through	the	Sun	cause	a	bubbling	of	its	visible	surface,	the
photosphere.8	They	described	it	as	a	“solar	symphony”	that	is	somewhat	like	a
“quivering	gong,”	or	“a	large	spherical	organ	pipe,”	or	a	“ringing	bell,”	for	the
Sun	has	millions	of	different	overtones.9	Ours	is	not,	of	course,	the	only	star	that
vibrates	in	this	way.	The	giant	star	XiHydrae	is	a	“sub-ultra-bass	instrument,”
with	oscillations	of	several	hours.

In	a	book	entitled	Einstein’s	Unfinished	Symphony:	Listening	to	the	Sounds
of	Spacetime,	Marcia	Bartusiak	described	the	possibility	of	detecting	a	black
hole	“by	the	melody	of	its	gravity	wave	‘song.’	”10	Black	holes	have	now	indeed
joined	the	heavenly	choir.	When	material	falls	toward	a	supermassive	black
hole,	that	produces	a	jet	of	high-energy	particles	that	blasts	away	from	the	black
hole	at	nearly	the	speed	of	light.	This	jet	plows	into	the	gas	around	the	black
hole,	creating	a	magnetized	bubble	of	high-energy	particles.	An	intense	sound
wave	rushes	ahead	of	the	expanding	bubble.11	The	NASA	satellite	Chandra,
named	for	Subrahmanyan	Chandrasekhar,	the	first	scientist	to	see	that,	given
Einstein’s	theories,	black	holes	were	inevitable,	has	found	evidence	of	acoustic
waves	like	this	in	the	gaseous	regions	around	two	supermassive	black	holes.	One
of	them,	at	the	center	of	the	Perseus	galaxy	cluster,	plays	the	deepest	note



discovered	so	far	in	the	universe,	B	flat	fifty-seven	octaves	below	middle	C.12

Mark	Whittle	of	the	University	of	Virginia	has	produced	a	tape	of	“Sounds
from	the	Infant	Universe”	which	reproduces	the	power	spectrum	of	the	Cosmic
Background	Radiation—radiation	that	is	still	reaching	us	from	the	early	universe
—as	an	audible	sound,	covering	the	first	million	years	of	the	cosmos	in	ten
seconds.13	In	order	to	make	the	acoustic	waves	hearable	by	the	human	ear,	he
had	to	shift	them	upward	approximately	fifty	octaves.	The	tape	begins	in	silence,
as	the	universe	did,	because	there	were	no	acoustic	waves	as	long	as	the	infant
universe	was	symmetrical.	Eventually	there	arose	acoustic	waves	of	deeper	and
deeper	tone.	The	expansion	of	the	universe	stretched	the	wavelengths,	making
for	an	overall	drop	in	pitch	as	the	tape	continues.	The	largest	variations	compare
to	“rock	concert	volume.”14

The	prediction	was	that	a	“ripple”	in	the	distribution	of	galaxies	in	the
universe	would	reflect	the	acoustic	waves	in	the	Cosmic	Background	Radiation.
At	the	January	2005	meeting	of	the	American	Astronomical	Society,	the	report
came	that	this	evidence	had	been	found.15	Those	who	announced	it	likened	the
discovery	to	“detecting	the	surviving	notes	of	a	cosmic	symphony”	and	the
difficulties	of	the	observations	to	trying	to	hear	the	“last	ring”	of	a	bell	that	“gets
forever	quieter	and	deeper	in	tone	as	the	Universe	expands.”16	One	cannot	help
thinking	that	Kepler	would	have	been	intensely	interested	in	projects	like	these.

Kent	Cullers,	who	works	at	SETI,	the	Search	for	Extraterrestrial
Intelligence,	and	on	whom	Carl	Sagan	based	one	of	his	characters	in	the	novel
and	film	Contact,	is	blind	and	claims	this	is	an	advantage	as	he	listens	to	signals
from	outer	space.	“When	I	hear	signals	from	distance	regions,	my	mind	goes	out
there.	I	try	to	ride	those	waves,	extend	my	senses	to	a	realm	where	they’ve	never
been,	hear	songs	from	a	cloud	of	gas.”17	In	the	1970s,	it	was	proposed	that	the
Pythagorean	theorem,	or	“Pythagorean	triples”	of	numbers	that	make	right
triangles,	be	beamed	as	messages	into	space,	in	the	hope	that	rational	life	in
other	star	systems	might	receive	the	signals	and	realize	that	there	was	rational
life	on	Earth.	It	is	a	signal	like	that	that	Cullers	is	hoping	to	hear,	coming	to	us
from	deep	space—evidence	of	how	truly	primordial	this	knowledge	is.



EPILOGUE

Music	or	Silence

GENERATION	AFTER	GENERATION,	men	and	women	have	recognized	the	essential
truth	of	the	ancient	insight	that	rationality	and	order	underlie	the	variety	and
confusion	of	nature.	The	image	of	Pythagoras	himself	has	shifted	and
occasionally	become	distorted,	but	through	all	the	centuries	and	all	the	paradigm
shifts,	this	Pythagorean	vision	has	never	been	extinguished	or	forgotten,	and	it
has	almost	always	been	cherished.	He	and	his	first	followers	could	not	begin	to
conceive	how	vast	a	landscape	lay	beyond	the	door	they	opened.	From
unimaginably	tiny	flickering	wisps	of	uncertainty	to	the	uncountable	galaxies,
into	multiple	dimensions,	and	maybe	even	to	an	infinity	of	other	universes.	Yet
numbers	and	number	relationships	seem	to	have	guided	the	way	through	this
labyrinth	of	the	physical	universe	as	effectively	as	Pythagoras	himself	could	ever
have	hoped.

If	civilization	as	we	know	it	were	wiped	out	and	only	a	remnant	were	left	to
start	over,	would	someone	make	that	same	discovery?	Break	the	code	again?
Surely	they	would!	Is	it	not	basic	truth?	Or	.	.	.	maybe	they	wouldn’t.	Maybe	the
Pythagoreans	got	it	wrong,	and	we	have	been	living	in	a	dream.	Maybe	the
world	really	never	got	beyond	a	formless	“unlimited,”	and	we	are	only
imagining	the	pattern,	or	creating	it	ourselves.	The	human	soul	has	not	proved	so
easy	to	map	with	numbers	.	.	.	and	yet	we	are	the	“rational	beings”	on	the	Earth,
presumably	reflecting	the	rationality	of	the	universe.	How	can	it	be	that	we	are
the	most	difficult	of	all	territory?	We	do	not	yet	know.	Meanwhile	most	of	us	are
too	intoxicated	by	the	music	of	Pythagoras	to	suffer	a	crisis	of	faith.

We	send	our	tiny	beeps	into	the	far	distant	reaches	of	space,	certain	that	any
intelligent	beings	out	there,	no	matter	how	“other”	they	may	be	in	some	respects,
could	not	have	failed	to	discover	what	our	world	did	.	.	.	sure	that	our	little
signaled	evidence	of	rationality	will	look	familiar	to	them.	In	spite	of	the	still
unsolved	mysteries—and	the	possibility	that	they	may	never	be	solved—our
Pythagorean	ideal	of	the	unity	and	kinship	of	all	being	tells	us	this	must	be	so.

Pythagoras	.	.	.	are	you	there?



Appendix

The	proof	for	the	Pythagorean	theorem	that	Jacob	Bronowski	thought	may	have
been	used	by	Pythagoras.1

Start	with	a	right	triangle.

Create	a	square	using	four	triangles	identical	to	that	one,	but	rotated,	so	that	the
“leading	points”	of	the	triangles	point	to	the	four	points	of	the	compass	(north,
south,	east,	and	west),	and	the	long	side	of	each	triangle	ends	at	the	leading	point

of	its	neighbor:	

What	you	now	have	is	a	square	based	on	the	long	side	of	the	original	triangle—
the	“square	on	the	hypotenuse.”	It	is	this	total	area	that	must	equal	the	sums	of
the	squares	of	the	other	two	sides,	if	the	Pythagorean	theorem	is	correct.	As	you
proceed,	remember	that	however	you	rearrange	these	five	shapes,	their	total	area
stays	the	same.	So,	rearrange	them	into	the	following	shape.	Place	a	rod	across
your	design	and	look	at	it	carefully.	You	will	see	that	you	have	two	squares,	and



they	are	the	squares	on	the	other	two	sides	of	the	triangle.	Using	no	numbers,
you	have	proved	the	Pythagorean	theorem.
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3.	I	have	mostly	followed	Burkert	regarding	the	authenticity	of	fragments	of
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author”	(p.	260).	The	quotation	is	in	W.	K.	C.	Guthrie	(2003),	pp.	307–308.
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4.	Ibid.,	p.	58.
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Chapter	10:	From	Aristotle	to	Euclid
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*	The	stories	of	the	three	biographers	themselves	are	in	Chapter	13.



*	There	was	an	Olympic	victor	in	the	588	B.C.	games	whose	name	was
Pythagoras	of	Samos,	as	recorded	in	the	highly	reliable	lists	of	Eratosthenes,
the	famous	librarian	at	Alexandria	who	first	measured	the	circumference	of
the	earth.	Eratosthenes	conjectured	that	this	man	and	Pythagoras	the
philosopher	were	one	and	the	same.	In	order	for	that	to	be	true,	Pythagoras
the	philosopher	would	have	had	to	have	been	born	a	few	decades	earlier	than
is	usually	supposed,	in	the	late	seventh	century.	For	the	Olympian	Pythagoras
to	have	been	Eurymenes	(who	might	have	adopted	the	name	of	his	teacher	as
the	son	of	Eratocles	did),	Pythagoras	the	philosopher	would	have	had	to	have
been	earlier	still.	What	the	appearance	of	the	name	in	the	Olympic	victory
lists	probably	does	mean	is	that	the	name	Pythagoras	was	current	on	Samos
before	Mnesarchus	decided	to	name	his	son	in	honor	of	the	Pythian	oracle	at
Delphi.



*	Both	tunnel	and	harbor	still	exist,	though	the	harbor	is	now	hidden	below	sea
level,	under	later	construction.	You	can	visit	the	tunnel	and	walk	a	good
distance	into	it.	In	an	ingenious	design,	the	walkway	is	separate	and	above	the
watercourse.



*	Iamblichus	linked	the	date	with	the	Olympic	victory	of	Eryxidas	of	Chalcis,
his	own	home	city.	Diogenes	Laertius	agreed	that	it	had	to	have	been	between
532	and	528	B.C.



*	Milo	is	also	known	as	Milon.	His	name	has	come	to	symbolize	extraordinary
strength.	He	was	the	most	famous	wrestler	in	the	ancient	world.



*	In	the	twenty-first	century,	2,600	years	later,	the	people	of	former	Magna
Graecia	still	do	not	totally	identify	with	the	modern,	centralized	Italy.	Old
attitudes	and	identities	die	hard.



*	Porphyry	said	he	got	this	information	from	Dicaearchus.



*	In	some	of	the	remoter	villages	of	those	mountains,	the	people	in	the	twenty-
first	century	still	speak	a	form	of	Greek	that	linguists	identify	as	neither
modern	Greek	nor	the	Byzantine	Greek	that	arrived	with	Byzantine	Christian
Greeks	in	late	antiquity	and	the	early	Middle	Ages,	but	as	an	ancient	form	of
the	language	that	is	spoken	almost	nowhere	else	in	the	world.



*	Diogenes	Laertius	took	the	story	from	the	writing	of	Diodorus,	a	scholar	of
the	first	century	B.C.	who	in	turn	got	the	story	from	the	writing	of	Plato’s
pupil	Heracleides	of	Ponticus.



*	Scholars	regard	this	quotation	as	likely	to	be	genuinely	early,	because	it	made
light	of	Pythagorean	belief,	rather	than	extol	it	as	would	have	happened	later,
in	an	overly	adulatory	period.



*	Think	of	having	the	lowest	string	tuned	to	C	on	the	piano,	the	fourth	string
tuned	to	F	above	the	C,	the	next	to	G	a	whole	step	above	that,	and	then	the
top	string	tuned	at	C	an	octave	above	the	lower	C.



*	Musical	instruments	and	human	voices,	because	of	intricate	differences	in	the
way	their	structures	resonate	and	amplify	sound,	emphasize	or	“bring	out”
certain	overtones	more	than	others,	and	that	is	what	causes	the	great	variety
of	sounds	they	make.	That	is	how	a	trumpet	ends	up	sounding	like	a	trumpet
while	a	clarinet	sounds	like	a	clarinet.



†	On	the	piano,	equivalent	notes	might	be,	for	example,	middle	C	(ground	note);
c	(octave	above	that	ground	note);	g	(fifth	above	that	octave);	c	(fourth	above
that	g).	For	a	demonstration	using	the	piano:	Press	down	gently	on	the	c
above	middle	C	without	allowing	it	to	sound	(removing	the	damper	from	the
strings).	Strike	middle	C	(the	ground	note)	and	you	will	clearly	hear	the
octave.	Press	carefully	on	the	g	above	that	octave.	Strike	middle	C	and	you
will	hear	that	fifth	above	the	octave.	A	piano	is	not	tuned	to	the	Pythagorean
system,	but	it	is	close	enough	for	you	to	hear	these	overtones.



*	A	gnomon	is	an	instrument	for	measuring	right	angles,	like	the	device	used	by
carpenters	called	a	“carpenter’s	square.”



*	Not	all	pyramids	have	only	four	sides.	The	Great	Pyramid	that	Pythagoras
may	have	seen	in	Egypt	is	not	a	pyramid	of	this	sort.	It	has	five	sides:	a
square	base	and	four	triangular	sides.



*	In	some	later	ancient	mathematics,	whose	roots	can	be	traced	to	the
“Pythagorean”	tradition	and	which	by	some	scholars’	interpretation	existed
separately	and	in	parallel	with	the	Euclidean	tradition,	the	number	2	also	had
no	status	as	a	“number.”	It	was	not	considered	even	or	odd	or	prime.	Like
“1,”	it	was	not	a	number	at	all,	but	the	“first	principle	of	number.”



*	Heracleides	Ponticus	is	not	to	be	confused	with	the	earlier	Heraclitus	who	so
severely	criticized	Pythagoras.	Heracleides	Ponticus	lived	in	the	fourth
century	B.C.	and	was	a	pupil	of	Plato.



*	Part	of	their	“present	condition”	was	an	economy	that	was	more	primitive
than	Croton’s.	They	used	no	coinage,	and	would	not	until	more	than	a	century
later.	See	W.	K.	C.	Guthrie	(2003),	p.	178	n.



*	“Theorem”	has	implications,	in	modern	terminology,	that	do	not	apply	to	the
earliest	knowledge	of	this	rule.	With	that	in	mind,	this	book	will	nevertheless
continue	to	use	“theorem”	to	avoid	seeming	to	mean	something	different	from
what	everyone	calls	the	Pythagorean	theorem.



†	There	were	more	than	one	Apollodorus,	but	this	one	was	probably
Apollodorus	of	Cyzicus,	who	lived	in	the	fourth	century	B.C.



*	The	claim	has	never	been	that	Pythagoras	discovered	the	right	angle	or	right
triangle,	but	that	he	discovered	the	relationship	between	the	three	sides	of	a
right	triangle—what	we	call	the	Pythagorean	theorem.



*	You	can	think	of	3–4–5	as	3	inches,	4	inches,	and	5	inches,	though	it	could
just	as	well	be	centimeters,	miles,	parsecs	or	any	other	unit	of	measurement.



†	Unfortunately,	most	of	Babylon	of	the	early	second	millennium	B.C.	cannot
now	be	excavated	because	it	is	well	below	the	water	table.



*	The	tablet	is	in	the	Iraq	Museum	in	Baghdad,	listed	in	the	register	as	55357.



*	This	mechanism,	used	probably	in	preparing	calendars	for	planting,
harvesting,	and	religious	observances,	was	discovered	in	the	wreck	of	a
Roman	ship	that	sank	off	the	island	of	Antikythera	in	about	65	B.C.	It	was
more	technically	complex	than	any	known	instrument	for	at	least	a
millennium	afterward.



†	Political	and	social	upheaval	may	have	created	disruptions.	Or	the	fault	may
lie	with	modern	scholarship,	for	few	sites	have	been	dug	from	these	periods.
They	do	not	attract	many	scholars,	partly	because	the	documents	are	terribly
difficult	to	decipher.	Furthermore,	as	the	very	complicated	cuneiform	script
gave	way	to	alphabetic	Aramaic,	documents	tended	to	be	written	on
perishable	and	recyclable	materials.	The	old	Sumerian,	Akkadian,	and	the
cuneiform	script	were	used	for	fewer	purposes,	mathematics	apparently	not
being	one	of	them,	and	even	where	cuneiform	was	used,	it	was	often	on	wax-
covered	ivory	or	wooden	writing	boards	that	were	erased	for	reuse	or	have
not	survived.



*	A	rational	number	is	a	whole	number	or	a	fraction	that	is	made	by	dividing
any	whole	number	by	another	whole	number:	½,	4/5,	2/7,	etc.	An	irrational
number	is	a	number	that	cannot	be	expressed	as	a	fraction,	that	is,	as	a	ratio	of
two	whole	numbers.	The	square	root	of	2	was	probably	found	by
Pythagoreans,	working	from	their	theory	of	odd	and	even	numbers,	possibly
as	early	as	about	450	B.C.,	and	surely	by	420,	fifty	to	eighty	years	after
Pythagoras’	death.	Plato	knew	of	the	square	roots	of	numbers	up	to	17.



*	Though	Heraclitus	seems	forthright	and	outspoken	in	the	fragments	about
Pythagoras,	he	was	known	to	be	no	easy	read.	His	contemporaries	dubbed
him	Heraclitus	the	Obscure	and	Heraclitus	the	Riddler.	A	story	circulated	in
the	time	of	Diogenes	Laertius	that	when	Socrates	received	a	copy	of	a	book
by	Heraclitus,	he	commented:	“What	I	understand	is	splendid;	and	so	too,	I’m
sure,	is	what	I	don’t	understand—but	it	would	take	a	Delian	diver	to	get	to	the
bottom	of	it.”



*	See	Chapter	9.



*	For	historians,	one	use	of	the	word	“fragment”	is	for	a	quotation	or	reference
in	the	writing	of	another	author	who	had	access	to	material	that	has	since
disappeared.



*	Ancient	authors	(and	later	translators)	also	called	“unlimited”	“limitless.”
They	called	its	opposite	“limiting,”	“limit,”	or	“limited.”



*	Note	that	10	is	not	a	perfect	number	as	the	term	is	defined	in	modern
mathematics.	We	will	get	to	those	later.



*	Tarentum	was	the	only	colony	established	by	Sparta,	and	Plato	greatly
admired	the	Spartan	system	of	government.	However,	the	people	who	had
colonized	Tarentum	in	706	B.C.	had	come	there	under	unusual	circumstances
and	might	not	have	shared	Plato’s	enthusiasm	for	Sparta.	They	were	sons	of
officially	arranged	marriages	uniting	Spartan	women	with	men	who	were	not
previously	citizens.	The	purpose	was	to	increase	the	number	of	male	citizens
who	could	fight	in	the	Messenian	wars.	When	the	husbands	were	no	longer
needed	as	warriors,	the	marriages	were	nullified	and	the	offspring	forced	to
leave	Sparta.



*	For	an	example	of	the	use	of	movement	in	geometry,	take	a	straight	line,
fasten	down	one	end	of	it,	and	swing	the	other	end	about.	The	result	is	an	arc.
Take	a	right	triangle	and	stand	it	upright	with	one	of	the	sides	serving	as	its
base;	swivel	it	around	the	upright	leg	and	the	result	is	a	cone.	(The	ancient
scholar	Eudemus	used	this	explanation	in	his	description	of	Archytas’
solution.)



†	A	lengthy	text	is	needed	to	understand	it	and	is	available	in	S.	Cuomo,
Ancient	Mathematics,	Routledge,	2001,	pp.	58	and	59,	and	on	the	Internet	at
http://mathforum.org/dr.math/faq/davies/cu/bedbl.htm

http://mathforum.org/dr.math/faq/davies/cu/bedbl.htm


*	More	generally,	ratios	such	as	5:4,	or	9:8,	in	which	the	larger	number	is	one
unit	larger	than	the	smaller	(mathematicians	call	these	superparticular	or
epimeric	ratios),	cannot	be	divided	into	two	equal	parts.



*	“Diatonic”	refers	to	the	scales	now	known	as	major	and	minor	scales.



*	Plato	was	not	the	first	to	think	of	the	planets	moving	on	rings.	Anaximander’s
cosmos	involved	huge	wheels,	whose	hollow	rims	were	filled	with	fire.	The
Sun,	Moon,	stars	and	planets	were	glimpses	of	this	fire,	showing	through	at
openings	in	the	wheel	rims.	Similar	ideas	had	surfaced	elsewhere	as	well.
After	Plato,	the	idea	was	taken	up	by	his	pupil	Eudoxus,	who	responded	to
Plato’s	challenge	to	produce	an	analysis	that	would	account	for	the
appearances	in	the	heavens	with	an	explanation	along	the	lines	introduced	by
the	Pythagoreans,	involving	a	combination	of	movements	of	the	sphere	of
stars	and	the	planets.	Eudoxus	did	this	with	a	system	not	of	concentric	rings
but	of	concentric	spheres,	and	that	was	adopted	by	Aristotle	and	would
dominate	astronomy	until	the	time	of	Tycho	Brahe	and	Johannes	Kepler.



*	Kepler	discovered	other	regular	solids,	the	“hedgehog,”	for	example,	but	they
did	not	have	all	the	characteristics	of	the	original	five.



*	“The	Academy”	also	refers	to	the	men	associated	with	this	school	after
Plato’s	lifetime,	including	his	successors	as	scholarch	elected	for	life	by	a
majority	vote	of	the	members.	Aristotle	was	also	associated	with	the
Academy,	first	as	a	pupil	and	later	as	a	teacher.	In	several	transformations,
still	claiming	descent	from	the	original,	the	Academy	lasted	until	the	sixth
century	A.D.	as	a	center	of	Platonism	and	neo-Platonism.



*	The	writer	Richard	E.	Rubenstein	put	it	succinctly:	“Plato	did	not	hate	the
world,	it	simply	reminded	him	of	a	better	place”	(Richard	E.	Rubenstein,
Aristotle’s	Children:	How	Christians,	Muslims,	and	Jews	Rediscovered
Ancient	Wisdom	and	Illuminated	the	Dark	Ages	[New	York:	Harcourt,
2003]).



*	The	classical	scholar	Walter	Burkert	thought	that	the	way	Aristotle
“occasionally	plays	off	the	Pythagorean	doctrines	against	the	Academy”
makes	“the	conclusion	unavoidable	that	he	was	using	written	sources	without
Academic	coloring.	Therefore	he	must	have	had	at	least	one	original
Pythagorean	document”	(Burkert,	47).



*	For	the	ancient	Greeks,	including	the	Pythagoreans,	1	was	neither	even	nor
odd,	and	it	was	not	a	number.	Number	implied	plurality—more	than	1.



*	What	emerged	as	a	Platonic	idea,	the	“Indefinite	Dyad,”	was	not	a
Pythagorean	concept.	Aristotle	spoke	of	no	very	important	role	for
“Twoness”	in	Pythagorean	doctrine.



*	The	table	of	opposites	was	probably	not	meant	to	imply	good	(the	left
column)	and	evil	(the	right),	though	other,	later	such	tables	did.	For	example,
for	Plato’s	Academy,	“good”	led	off	the	left-hand	column,	and	still	later,
Platonists,	neo-Pythagoreans,	and	pseudo-Pythagorean	writers	rearranged	the
columns.	Plutarch’s	table	was	thoroughly	Platonized:	“Good”	was	on	top	and
“Dyad”	replaced	plurality



*	A	modern	major	or	minor	scale.



*	Plato	did	not	call	them	that,	though	he	was	using	them	in	the	most
Pythagorean-inspired	of	his	dialogues.



*	Many	called	him	Empedocles	the	Pythagorean,	but	except	for	agreeing	about
reincarnation,	his	ideas	ran	far	from	Pythagorean	thinking.



*	Scholars	such	as	Kahn	think	these	men	were	not	fictional	and	that	their	words
reflected	a	much	older	line	of	Pythagorean	speculation.



*	In	search	of	the	source	of	Iamblichus’	lists	of	Pythagoreans,	Burkert	believed
he	had	narrowed	down	the	possibilties,	conclusively,	to	Aristoxenus	(Burkert,
p.	105,	n.	406).



*	When	someone	asked	what	the	practical	use	of	one	theorem	was,	Euclid
turned	aside	to	his	slave,	sniffed,	and	muttered,	“He	wants	to	profit	from
learning,	give	him	a	penny.”	The	Pythagorean	aphorism	was	“A	diagram	and
a	step	(an	advance	in	knowledge),	not	a	diagram	and	penny.”



†	The	three	surviving	books	in	which	he	included	material	about	the
Pythagoreans	are	Metaphysics,	Physics,	and	On	the	Heavens.



†	Recall	that	the	regular	solids	each	fit	neatly	into	a	sphere,	and	the	fifth	is	close
to	being	a	sphere.



†	Copernicus	would	point	to	Heracleides	Ponticus	as	an	ancient	precedent	when
he	presented	his	hypotheses	in	the	sixteenth	century.	The	Earth	also	rotated	in
Plato’s	Timaeus,	and	the	idea	was	probably	not	original	with	either	man,	for
Philolaus	and	possibly	earlier	Pythagoreans	thought	part	of	the	apparent
movement	of	the	heavens	was	caused	by	the	movements	of	the	earth.
Copernicus	also	referred	to	Hicetas	and	Ecphantus	of	Syracuse.



*	The	Elements	was	translated	by	Boethius	in	about	A.D.	480,	but	not	until	A.D.
1120,	when	Athelhard	of	Bath	translated	it	again,	this	time	from	Arabic	into
Latin,	did	mathematicians	begin	to	appreciate	its	worth.



*	Cicero’s	life,	and	his	political	life,	began	when	Rome	was	a	republic	and
ended	after	the	assassination	of	Julius	Caesar	and	the	beginning	of	the	reign
of	Octavian	(Caesar	Augustus).	He	was	a	strong	supporter	and	defender	of	the
republic	and	strove	on	its	behalf	during	the	civil	wars.



*	The	Romans	continued	to	use	this	formation	effectively	through	the	years	of
their	republic	and	in	the	expansion	of	their	Empire.



†	Alcibiades’	reputation	for	lack	of	discipline	and	unscrupulousness	was	later
used	to	support	the	charges	brought	against	Socrates	of	corrupting	the	youth
of	Athens,	which	resulted	in	Socrates’	death	sentence.



*	Pliny	lost	his	life	when	his	insatiable	curiosity	about	natural	phenomena
tempted	him	too	close	to	the	erupting	Vesuvius.



*	Cicero	made	several	references	to	this	celestial	phenomenon	that	had
appeared	in	the	year	129	B.C.	The	scientific	name	is	parhelion,	in	the
vernacular	a	mock	sun	or	sun	dog.	The	appearance	is	of	two	extra	suns,	one
on	each	side	of	the	Sun.	This	happens	when	the	Sun	is	shining	through	a	thin
mist	of	hexagonal	ice	crystals	falling	with	their	principal	axes	vertical.	If	the
principal	axes	are	arranged	randomly	in	a	plane	perpendicular	to	the	Sun’s
rays,	the	appearance	is	of	a	halo	around	the	Sun.



*	Timaeus	of	Locri	was	the	central	character	in	Plato’s	Timaeus,	but	there	was
no	real	person	by	that	name.	Writings	attributed	to	him	cannot	be	considered
examples	of	Pythagorean	doctrine.	They	are	an	interpretation	of	Plato’s
Timaeus,	from	the	first	century	B.C.	or	the	first	century	A.D.



*	Diogenes	Laertius	copied	the	excerpt	not	from	the	original	but	from	an	earlier
author	named	Alexander	Polyhistor	who	in	turn–this	was	in	the	first	half	of
the	first	century	B.C.–copied	it	from	a	still	older	book.



†	In	view	of	all	the	other	anachronisms	in	the	Notebooks,	scholars	have	ruled
out	the	possibility	that	they	were,	after	all,	authentically	early	and	primitively
foreshadowed	Aristotle’s	cosmos.



*	One	clue	has	turned	out	to	be	a	red	herring:	the	suggestion	that	inclusion	of
superstition	and	“marvelous”	events	in	a	work	represented	more	“primitive”
thinking	and	dated	the	material	earlier.	Tales	about	a	talking	river	or	being	in
two	places	at	the	same	time	indicated	that	what	you	were	reading	was
authentically	early,	so	it	was	claimed.	However,	the	late	fourth	century	and
the	third,	second,	and	first	centuries	B.C.	and	the	early	A.D.	centuries	were	as
accepting	of	magic,	marvels,	and	portents	as	the	fifth	and	sixth	centuries	B.C.
had	been—arguably	more	so.	Such	elements	were	expected	in	the	biography
of	an	important	leader.	Aristotle	wrote	during	this	period,	when	people	may
have	been	more	ready	to	believe	in	a	golden	thigh	than	their	fore-bears	would
have	been	at	the	time	of	Pythagoras.	Clement	of	Alexandria,	an	eminent
Christian	scholar	of	the	second	and	early	third	centuries	A.D.,	described	a
“standard	educational	curriculum...	astrology,	mathematics,	magic,	and
wizardry”—a	quadrivium	that	would	seem	appropriate	for	Harry	Potter’s
Hogwarts	School.	“The	whole	of	Greece,”	Clement	lamented,	“prides	itself
on	these	as	supreme	sciences”	(Clement	of	Alexandria,	Stromateis	2.1.2.	3–4.
Quoted	in	translation	in	J.	Robert.	Wright,	ed.,	Ancient	Christian
Commentary	on	Scripture,	Old	Testament	IX	[Downers	Grove,	Ill.:
Intervarsity	Press,	p.	18]).	For	Diogenes	Laertius,	Porphyry,	and	Iamblichus,
the	fact	that	material	included	the	miraculous	did	not	invalidate	the
information	or	call	the	source	into	question.	There	was	probably	a	mystical	or
magical	element	to	the	earliest	Pythagoreanism,	but	late	Greek,	Alexandrian,
and	Roman	writers	were	eager	to	report	and	exaggerate	it.	It	is	difficult	to	see
through	the	veil	of	a	superstitious	age	and	judge	how	skeptical	an	earlier	era
was,	but	it	is	clear	that	one	cannot	decide	that	information	was	more
authentically	ancient	simply	because	it	included	more	of	the	“marvelous.”



*	There	was	a	legend	about	a	Christian	Philo,	even	a	Bishop	Philo,	and	a	story
in	which	he	met	the	Apostle	Peter.



†	Shakespeare	found	the	stories	of	Antony	and	Cleopatra,	Timon	of	Athens,	and
Coriolanus	in	the	Lives,	and	sometimes	used	Plutarch’s	words	virtually
verbatim	or	changed	them	(as	he	read	them	in	translation)	only	as	much	as
was	necessary	to	transform	them	into	verse.



*	Nicomachus	was	also	intrigued	by	a	pseudo-science	called	gematria	that	was
not	Pythagorean	but	originated	with	the	ancient	Babylonians	and	survived	in
ancient	Greece	and	the	Hellenistic	period.	In	gematria,	each	letter	of	the
alphabet	had	a	numerical	value.	A	word	could	be	spelled	in	numbers.	Sargon
II,	in	the	century	before	Pythagoras’	birth,	had	the	wall	of	Khorsabad	built	to
a	measurement	that	was	the	numerical	equivalent	of	his	name—16,283	cubits.
The	name	for	the	Gnostic	divinity	Abraxas	had	the	numerical	value	of	365,
the	number	of	days	in	a	solar	year.	Nicomachus	did	not	claim	that	gematria
was	a	Pythagorean	practice,	and	it	was	not.



*	Plotinus	used	and	developed	Numenius’	thoughts	so	extensively	that	he	was
accused	of	plagiarism.	A	colleague	came	to	his	rescue	by	writing	an	entire
book	to	point	out	the	differences	between	the	two.



*	This	scale	adds	up	to	more	than	an	octave,	a	problem	easily	corrected	by
changing	the	interval	between	Saturn	and	the	stars	to	a	half	tone,	as	music
theorists	in	later	antiquity	corrected	Pliny.	A	half	tone	(half	step)	is	the
interval	between	one	key	and	the	next—black	or	white—on	a	piano.



*	Along	with	all	other	pagan	schools,	the	Academy	would	close	in	526,	two
years	after	Boethius	died,	by	order	of	the	Byzantine	emperor	Justinian.



*	Nestorian	Christians	were	a	group	that	originated	in	Asia	Minor	and	Syria	in
the	fifth	century	A.D.	and	stressed	the	human	nature	of	Christ.	There	are	still
many	thousands	of	them;	today	called	the	Church	of	the	East,	the	Persian
Church,	or	the	Assyrian	or	Nestorian	Church.	Most	Nestorians	live	in	Iraq,
Syria,	and	Iran.



†	It	is	indicative	of	the	cosmopolitan	mix	of	religions	and	ideas	in	the	Middle
Ages	in	Islamic	regions	of	the	world	that	Hunayn’s	writing,	reflecting	ancient
pagan	ideas	and	coming	from	a	Christian	who	lived	and	worked	in	Islamic
Baghdad,	survived	mainly	because	of	a	twelfth/thirteenth-century	Hebrew
translation	by	Judah	al-Harizi.



*	By	“perfect	number”	they	did	not	mean	what	the	Pythagoreans	had	meant
when	they	identified	10	as	the	perfect	number.	A	perfect	number	by	more
modern	standards	(found	already	in	Nicomachus)	is	a	number	the	sum	of
whose	divisors	equals	the	number.	The	number	6	is	the	smallest	perfect
number:	1	+	2	+	3	=	6.



*	A	planet’s	period	is	the	time	it	takes	to	complete	one	orbit.



*	Aurelian	was	reading	from	a	mistranslation	of	the	Book	of	Job.



*	Regino’s	description	sounds	very	much	like	Aristotle’s,	which	means	he	must
indeed	have	gotten	it	through	Boethius.	Regino	lived	before	the
reintroduction	of	Aristotle	to	Latin	Europe.



*	In	the	mid-twentieth	century,	there	was	still	one	expert,	Vincenzo	Capparelli,
who	was	convinced	that	Pythagoras	invented	Arabic	numerals	(Vincenzo
Capparelli,	La	sapienza	di	Pitagora	[Padua:	CEDAM,	1941]).



*	Most	who	used	an	abacus	were	still	using	Roman	numerals,	the	English
exchequer	as	late	as	the	sixteenth	century!	(H.	G.	Koenigsberger,	Medieval
Europe,	400–1500	[Harlow,	England:	Longman	Group,	1987],	p.	202.)



*	T.	S.	Eliot	echoed	those	sentiments	when	he	suggested	that	to	those	who	say
we	shouldn’t	read	the	old	authors	since	we	know	so	much	more	than	they	did,
we	should	answer,	“And	they	are	what	we	know.”



*	The	“Chaldean	Oracles,”	written	in	verse	in	the	second	century	A.D.	by	a	man
named	Julianus	the	Theurgist	and	his	son,	combined	Babylonian	and	Persian
beliefs	with	Platonic	and	neo-Platonic	philosophy	and	became	an	important
religious	book	for	neo-Platonists.



†	“Chaldean”	in	this	case	meaning	Babylonian.



*	The	great	Andrea	Palladio	was	to	write	four.



*	Alberti’s	most	important	buildings	included,	in	Florence,	the	Palazzo
Rucellai,	the	Rucellai	Chapel,	the	Annunziata,	and	the	façade	of	the	Maria
Novella	church;	in	Rimini,	the	Tempio	Malatestiano;	and	in	Mantua,	the
churches	of	San	Sebastiano	and	San	Andrea.



*	Ecphantus	the	Pythagorean	lived	in	the	fourth	century	B.C.	There	is	some
suspicion	that	he	may	have	been	only	a	fictional	character	in	one	of
Heracleides’	dialogues,	but	Copernicus	thought	he	was	a	historical	person,
and	most	modern	scholars	tend	to	agree.



*	A	regular	polygon	is	a	flat	shape	in	which	all	edges	are	the	same	length.	For
example:	the	triangle,	square,	pentagon,	hexagon,	etc.	ad	infinitum.



*	A	regular	polyhedron	is	a	solid	shape	in	which	all	the	edges	have	the	same
length	and	all	the	faces	the	same	shape.	The	Pythagorean	or	Platonic	solids
are	the	regular	polyhedra.



†	When	astronomers	of	Kepler’s	time	and	earlier	spoke	of	the	“spheres,”	they
did	not	mean	the	planets.	The	Ptolemaic	view	of	the	cosmos	had	the	planets
traveling	in	transparent	“crystalline	spheres,”	nested	within	one	another	like
the	layers	of	an	onion	and	centered	on	the	Earth.	Though	Kepler	and	Mästlin
discussed	spheres	in	their	correspondence	about	Kepler’s	new	idea,	Kepler
(like	his	predecessor	Tycho	Brahe)	did	not	believe	there	were	actual	glasslike
spheres	that	one	could	crash	through	in	a	space	vehicle.	Thinking	about	them
in	a	geometrical	sense,	not	as	physical	reality,	was	nevertheless	helpful	in
visualizing	the	movements	of	the	planets.



*	Depending	on	one’s	definition	of	“planet,”	Pluto	and	some	other	bodies	that
orbit	the	Sun	may	or	may	not	have	that	status.	Hence	“eight	or	nine.”



*	An	example	of	a	third	on	the	piano	is	the	interval	from	C	to	E	(major	third)	or
C	to	E-flat	(minor	third).	An	example	of	a	sixth	is	the	interval	from	C	to	A
(major	sixth)	or	C	to	A-flat	(minor	sixth).	These	are	intervals	that	modern
ears	are	most	likely	to	hear	as	“beautiful”	and	easy	to	listen	to.



*	The	Tychonic	system	had	the	Sun	and	the	Moon	orbiting	the	Earth,	and	all	the
other	planets	orbiting	the	Sun.	It	was	the	geometric	equivalent	of	he
Copernican	system,	but	retained	the	unmoving	Earth.



*	Kepler’s	first	law	of	planetary	motion:	A	planet	moves	in	an	elliptical	orbit
and	the	Sun	is	one	focus	of	the	ellipse.	Kepler’s	second	law	of	planetary
moton:	A	straight	line	drawn	from	a	planet	to	the	Sun	sweeps	out	equal	areas
in	equal	times	as	the	planet	travels	in	its	elliptical	orbit.



*	A	half-step	is	the	interval	between	any	note	on	the	piano	and	the	one
immediately	to	either	side	of	it,	regardless	of	whether	that	is	a	white	or	black
key.



*	Imagine	you	are	standing	across	the	corridor	from	a	moving	walkway	in	an
airport.	A	man	is	walking	along	the	walkway,	from	your	left	to	your	right,	but
he	is	going	the	wrong	way	and	so	is	actually	losing	ground.	Say	he	is	walking
at	5	miles	per	hour	and	the	walkway	is	moving,	in	the	opposite	direction,	at
10	miles	per	hour.	From	your	vantage	point,	you	see	the	combined
movement,	and	the	man	appears	to	be	moving	5	miles	an	hour	toward	the	left.
A	woman	is	walking	faster,	8	miles	per	hour,	but	also	in	the	wrong	direction.
Eight	miles	per	hour	is	not	sufficient	to	avoid	losing	ground	against	the	10-
mile-an-hour	walkway	that	is	moving	in	the	opposite	direction,	so,	again,
from	your	vantage	point,	you	see	the	combined	motion,	and	this	woman
appears	to	be	moving	2	miles	per	hour	toward	your	left.	You	cannot	be
faulted	for	thinking	that	the	man	(who	appears	to	be	moving	5	miles	per	hour
toward	your	left)	is	moving	faster	than	the	woman.	If	the	walkway	stopped
you	would	find	out	what	the	true	velocity	of	each	one	was,	and	your	finding
would	contradict	your	initial	impression.	Likewise,	Kepler	concluded	that	if
the	daily	rotation	of	the	heavens	had	stopped,	Pythagoras	would	have	seen
that	Saturn	is	the	slowest	of	the	planets,	and	should	be	sounding	the	lowest
tone.



*	In	German,	dur	in	music	still	means	“major”;	moll	is	“minor.”



*	You	get	the	same	result	by	playing	scales	using	only	the	white	keys	on	a
piano	but	starting	on	different	notes.	The	Ionian	mode	(start	on	C)	is	the	same
as	the	major	scale,	the	Dorian	mode	(start	on	D),	the	Phrygian	mode	(E),	the
Lydian	mode	(F),	and	the	Mixolydian	mode	(G).	The	Aolian	mode	(start	on
A)	is	the	same	as	the	minor	scale.



*	The	three-man	cell	was	used	again	in	Vietnamese	communism,	in	Algeria	in
the	1950s,	and	in	the	USSR	in	the	late	1960s.



*	Picture	a	collection	of	coins.	Call	it	Set	A.	A	collection	of	coins	is	an	example
of	a	“set”	that	cannot	be	a	member	of	its	own	set.	In	other	words,	a	collection
of	coins	is	not	a	coin.	Picture,	then,	another	set	(call	it	Set	B)	that	contains	all
things	that	are	not	coins.	This	Set	B	itself	is	not	a	coin,	so	it	must	be	a
member	of	itself.	In	other	words,	Set	B	is	a	member	of	Set	B.	Now	picture	a
third	set—Set	C.	This	one	contains	all	the	sets	that	are	not	members	of
themselves.	Is	Set	C	a	member	of	itself	or	not?	You	will	find	that	it	is	if,	and
only	if,	it	is	not.



*	However,	the	simplest	form	of	a	problem	is	not	always	the	form	in	which	it	is
first	encountered.	If	it	were,	the	history	of	mathematical	and	scientific
discovery	would	have	gone	much	more	smoothly!
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